高三数学教学与复习计划
2008年江西省实行新课程改革,高考命题是以《考试说明》为依据的,高三数学复习是要以《考试说明》为指导的,但是,《考试说明》可能要等到下一学期中途才能出台。高三复习工作是等不得的。这就要求我们各位授课教师结合近几年周边省份如山东、江苏、海南、上海等省市高考试题、对照题型示例,仔细揣摩,去研究“课程标准”中的各项要求的具体落脚点,把握试题改革的新趋势。为了使本届高三数学的复习工作更加有效,在内容取舍上,应以考试内容为准,不随意扩充、拓宽和加深;注意各知识点的难度控制。根据学科的特点,结合本校数学教学的实际情况制定以下复习计划。
二、学情分析
今年我校高三有九个教学班,其中理科五个班,文科四个班。由于种种因素,我校的优质生源严重流失,学生的基础普遍较差,优生较少。本届学生是第一届课改生,在高一、高二阶段,无论是教师或学生,思想认识都不到位,学习抓得不紧,尤其课时不足,只重进度不重效果,大部分学生的基础知识、基本方法掌握不好,学习数学的信心和兴趣不足。并且,学生的“知识回生”太快,有明显优势的学生较少,主动学习数学的习惯不强.还有不少数学是“缺腿”的优生。
三、指导思想
抓基础知识和基本技能,抓数学的通性通法,即教材与课程目标中要求我们把握的数学对象的基本性质,处理数学问题基本的、常用的数学思想方法,如归纳、演绎、分析、综合、分类讨论、数形结合等。提高学生的思文品质,以不变应万变,使数学学科的复习更加高效优质。
研究《课程标准》和《教材》,既要关心《课程标准》中调整的内容及变化的要求,又要重视今年数学不同版本《考试说明》的比较。结合上一年的新课改区高考数学评价报告,对《课程标准》进行横向和纵向的分析,探求命题的变化规律。
四、目标
1、高考平均分力求达70分;2、解决优生的数学“缺腿”问题;3、培养尖子生突破“120分”.
五、具体措施
根据以上分析我提出第一轮教学和复习建议:
(一)同备课组老师之间加强研究 毕业论文http://www.youerw.com/
1、研究《课程标准》、参照周边省份10年《考试说明》,明确复习教学要求。
2、研究高中数学教材。处理好几种关系:课标、考纲与教材的关系;教材与教辅资料的关系;重视基础知识与培养能力的关系。
3、研究2010年新课程地区高考试题,把握考试趋势。特别是山东卷、全国卷、上海卷以及广东、江苏、海南、宁夏等课改地区的试卷。
4、研究高考信息,关注考试动向。及时了解2011高考动态,适时调整复习方案。
5、研究本校数学教学情况、尤其是本届高三学生的学情。有的放矢地制订切实可行的校本复习教学计划。
(二)重视课本,夯实基础,建立良好知识结构和认知结构体系
课本是考试内容的载体,是高考命题的依据,也是学生智能的生长点,是最有参考价值的资料。只有吃透课本上的例题、习题,才能全面、系统地掌握基础知、基本技能和基本方法,构建数学的知识网络,以不变应万变。在求活、求新、求变的命题的指导思想下,高考数学试题虽然不可能考查单纯背诵、记忆的内容,也不会考查课本上的原题,但对高考试卷进行分析就不难发现,许多题目都能在课本上找到“影子”,不少高考题就是将课本题目进行引申、拓宽和变化,高考试题千变万化,异彩纷呈,但无论怎样变化、创新,都是基本数学问题的组合。所以,对基本数学问题的认识,基本数学问题解法模式的研究,基本问题所涉及的数学知识、技能、思想方法的理解,乃是数学复习课的重心。多年的教学实践,使我们深刻体会到:基础题、中档题不需要题海,高档题题海也是不能解决的。在第一轮复习中,切忌“高起点、高强度、高要求”,所谓“居高临下”,往往投入很大,收效甚微,甚至使学生丧失学习数学的兴趣和信心。要引导学生重视基础,切实抓好“三基”(基础知识、基本技能、基本方法)。最基础的知识是最有用的知识,最基本的方法是最有用的方法。在复习过程中自觉地将新知识及时纳入已有的知识系统中去,融代数、三角、立几、解几于一体,进而形成一个条理化、有序化、网络化的高效的有机认知结构。
(三)提升能力,适度创新
考查能力是高考的重点和永恒主题。教育部已明确指出高考从“以知识立意命题”转向“以能力立意命题”。新大纲提出能力是指思文能力、运算能力、空间想象能力以及实践能力和创新意识,包括提出问题、分析问题和解决问题的能力,数学探究能力、数学建模能力、数学交流能力、数学实践能力、直觉猜想、归纳抽象、符号表示、运算求解、演绎证明、体系构建等诸多方面,能够对客观事物中的数量关系和数学模式做出思考和判断。其中理性思文能力是数学能力的核心,而分析问题和解决问题的能力(实践能力)是数学的一种综合能力,需将思文、运算、空间想象有机结合去完成的一种复合型能力,是思文能力的更高层次。逻辑思文能力在解题中表现为:①领会题意、明确目标;②寻找解题方向和有效解题步骤;③正确推理和运算,表述解题过程。能力的培养首先应重视知识与技能的学习、思想方法的渗透。知识与技能的掌握有助于能力的提高,思想方法的掌握有助于广泛迁移的实现。实践能力在考试中表现为解答应用问题。创新是指在新的问题情境中,综合灵活地应用所学知识、思想和方法,进行独立思考、探索和研究,选择有效的方法和手段分析和处理信息,提出解决问题的思路,创造性地解决问题。创新意识是理性思文高层次表现,对数学问题的“观察、猜测、抽象、概括、证明,是发现问题和解决问题的重要途径,对数学知识的迁移、组合、融汇的程度越高,显示出的创新意识也就越强。