51单片机函数信号发生器设计+原理框图+流程图+源代码 第2页
MCU-based Function Signal Generator Design ABSTRACT
This issue is low-cost microcontroller MCS-51 family of highly reliable functions constitute a signal generator applications. This design generates a binary control signal MCU operation to control the AD9850 to realize the function of waveform generation. Function Generator based on single chip and strong anti-interference, low power consumption, low cost, easy to implement, has high practical value.
The system control microcontroller core 51 by the power supply module, MCU AT89S52 minimum system module, the keyboard interrupt module, function signal generator module, MAX7219 display module. Calculated by scanning the keyboard interrupt the required frequency, using numerical methods to control DDS chip AD9850 produced 100Hz-40MHz sinusoidal signal, 100Hz-5MHz square wave signal, the waveform output is stable and high precision. Use of MAX7219 drives four in one of eight out of two LED digital tube, showing the frequency of the current waveform. Modular system with C language programs to enhance readability, ease of AT89S52 on the module controlRealize the function of setting.毕业论文
http://www.youerw.comKey words:Singlechip Direct Digital Synthesizer(DDS) AD9850 Function Signal Sine wave Square Wave
摘要本课题是采用低成本的MCS-51系列单片机构成具有高可靠性的函数信号发生器的应用设计。本设计通过单片机运算产生二进制控制信号去控制AD9850进而实现函数波形的产生。基于单片机的函数信号发生器抗干扰性强、功耗低、成本低、易实现,具有很高的实用价值。
本系统以51单片机为控制核心,由电源模块、单片机AT89S52最小系统模块、中断键盘模块、函数信号发生模块、MAX7219显示模块组成。采用中断键盘扫描方式计算所需频率,用数控的方法控制DDS芯片AD9850产生100Hz-40MHz正弦信号,100Hz-5MHz方波信号,波形输出较稳定,且精度较高。采用MAX7219驱动两个四位一体的八段LED数码管,显示出当前波形的频率。系统用C语言编写模块化程序,增强可读性,便于AT89S52对各模块的控制,实现各功能的设置。本文来自优.文^论^文·网
关键词:单片机 直接数字频率合成(DDS) AD9850 函数信号 正弦波 方波1.1 研究背景
近年来随着计算机在社会领域的渗透, 单片机的应用正在不断地走向深入,同时带动传统函数信号发生器日新月益更新。传统的函数信号发生器大多数采用了模拟锁相环、数字锁相环、小数分频锁相环(fractional-N PLL Synthesis)技术,但是随着科技的进步,出现了直接数字合成(Direct Digital Synthesis-DDS)的FS技术。单片集成的DDS产品是一种可代替锁相环的快速频率合成器件。DDS是产生高精度、快速变换频率、输出波形失真小的优先选用技术。DDS以稳定度高的参考时钟为参考源,通过精密的相位累加器和数字信号处理,通过高速D/A变换器产生所需的数字波形(通常是正弦波形),这个数字波经过一个模拟滤波器后,得到最终的模拟信号波形。通过高速DAC产生数字正弦数字波形,通过带通滤波器后得到一个对应的模拟正弦波信号,最后该模拟正弦波与一门限进行比较得到方波时钟信号。
图1-1 DDS方波输出框图
DDS系统一个显著的特点就是在数字处理器的控制下能够精确而快速地处理频率和相位。除此之外,DDS的固有特性还包括:相当好的频率和相位分辨率(频率的可控范围达μHz级,相位控制小于0.09°),能够进行快速的信号变换(输出DAC的转换速率300百万次/秒)。这些特性使DDS在军事雷达和通信系统中应用日益广泛。
其实,以前DDS价格昂贵、功耗大(以前的功耗达Watt级)、DAC器件转换速率不高,应用受到限制,因此只用于高端设备和军事上。随着数字技术和半导体工业的发展,DDS芯片能集成包括高速DAC器件在内的部件,其功耗降低到mW级(AD9851在3.3v时功耗为650mW),功能增加了,价格便宜。因此,DDS也获得广泛的应用:现代电子器件、通信技术、医学成像、无线、PCS/PCN系统、雷达、卫星通信。
2 课题设计相关理论知识
2.1 DDS的系统简介
2.1.1 DDS的基本原理
DDS的基本原理是利用采样定理,通过查表法产生波形。DDS的结构有很多种,其基本的电路原理可用图2-1来表示。毕业论文
http://www.youerw.com图2-1 DDS原理图
相位累加器由N位加法器与N位累加寄存器级联构成。每来一个时钟脉冲fs,加法器将频率控制字k与累加寄存器输出的累加相位数据相加,把相加后的结果送至累加寄存器的数据输入端。累加寄存器将加法器在上一个时钟脉冲作用后所产生的新相位数据反馈到加法器的输入端,以使加法器在下一个时钟脉冲的作用下继续与频率控制字相加。这样,相位累加器在时钟作用下,不断对频率控制字进行线性相位累加。由此可以看出,相位累加器在每一个时钟脉冲输入时,把频率控制字累加一次,相位累加器输出的数据就是合成信号的相位,相位累加器的溢出频率就是DDS输出的信号频率。 用相位累加器输出的数据作为波形存储器(ROM)的相位取样地址,这样就可把存储在波形存储器内的波形抽样值(二进制编码)经查找表查出,完成相位到幅值转换。波形存储器的输出送到D/A转换器,D/A转换器将数字量形式的波形幅值转换成所要求合成频率的模拟量形式信号。低通滤波器用于滤除不需要的取样分量,以便输出频谱纯净的正弦波信号。 DDS在相对带宽、频率转换时间、高分辨力、相位连续性、正交输出以及集成化等一系列性能指标方面远远超过了传统频率合成技术所能达到的水平,为系统提供了优于模拟信号源的性能。
上一页 [1] [2] [3] [4] [5] [6] [7] [8] [9] 下一页
51单片机函数信号发生器设计+原理框图+流程图+源代码 第2页下载如图片无法显示或论文不完整,请联系qq752018766