第4章 CRC码
4.1 CRC码的基本原理
CRC 校验的基本思想是利用线性编码理论,在发送端根据要传送的k 位二进制码序列,以一定的规则产生一个校验用的监督码(CRC 码)r 位,并附在信息后边,构成一个新的二进制码序列数共本文来自优%文-论'文.网,毕业论文 www.youerw.com 加7位QQ324~9114找原文 (k+r) 位,最后发送出去。在接收端,则根据信息码和CRC 码之间所遵循的规则进行检验,以确定传送中是否出错。
16 位的CRC 码产生的规则是先将要发送的二进制序列数左移16 位(乘以216)后,再除以一个多项式,最后所得到的余数既是CRC 码。求CRC 码所采用模2 加减运算法则,既是不带进位和借位的按位加减,这种加减运算实际上就是逻辑上的异或运算,加法和减法等价,乘法和除法运算与普通代数式的乘除法运算是一样,符合同样的规律。接收方将接收到的二进制序列数(包括信息码和CRC 码)除以多项式,如果余数为0,则说明传输中无错误发生,否则说明传输有误。
几个基本概念
1.多项式与二进制数码
多项式和二进制数有直接对应关系:x的最高幂次对应二进制数的最高位,以下各位对应多项式的各幂次,有此幂次项对应1,无此幂次项对应0。可以看出:x的最高幂次为R,转换成对应的二进制数有R+1位。
多项式包括生成多项式G(x)和信息多项式C(x)。
如生成多项式为G(x)=x4+x3+x+1,可转换为二进制数码11011。
而发送信息位 1111,可转换为数据多项式为C(x)=x3+x2+x+1。
2.生成多项式 论语处世最终诉求对当下和谐观的启迪
是接受方和发送方的一个约定,也就是一个二进制数,在整个传输过程中,这个数始终保持不变。
在发送方,利用生成多项式对信息多项式做模2除生成校验码。在接受方利用生成多项式对收到的编码多项式做模2除检测和确定错误位置。
应满足以下条件:
a、生成多项式的最高位和最低位必须为1。
上一页 [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]