function y=sphiII(x)
usalconst;
h=26.566;
if (x<0|x>2*pi)
error('输入范围出错');
end
if (x<48*deg)|(x>=(276*deg))
y=0;
else
if x>=48*deg&x<96*deg
y=0.5*h*(1+sin(15/4*(x-72*deg)));
else
if x>=96*deg&x<228*deg
y=h;
else
y=0.5*h*(1+cos(15/4*(x-228*deg)));
end
end
end
function y=tanaI(x,e,s0)
%tanalpha means tan(/alpha), alpha means press angle
%x has a unit of radian range[0,2*pi]
%e s0(s_0) see TextBook P145 8.6 s0=(r0^2-e^2)^0.5
usalconst; %Load constand
t=dsphiI(x)-e;
if(x<0)|(x>2*pi)
error('Input sector x has not got a right range ([0,2*pi])');
return;
end
if(e<0)|(s0<0)
error('Input sector e or s0 has not got a right range (>0)');
end
if (t<0)
t=t*-1;
end
y=t/(sphiI(x)+s0);
function y=tanaII(x,e,s0)
%tanalpha means tan(/alpha), alpha means press angle
%x has a unit of radian range[0,2*pi]
%e s0(s_0) see TextBook P145 8.6 s0=(r0^2-e^2)^0.5
usalconst; %Load constand
t=dsphiII(x)-e;
if(x<0)|(x>2*pi)
error('Input sector x has not got a right range ([0,2*pi])');
return;
end
if(e<0)|(s0<0)
error('Input sector e or s0 has not got a right range (>0)');
end
if (t<0)
t=t*-1;
end
y=t/(sphiII(x)+s0);
附录4 所编脚本与计算结果
genchk.m:
%槽轮的驱动力矩计算
Mz=60; %诂计克服摩擦阻力和生产阻力所需的承载力矩
w=20*pi/60; %曲柄角速度
c=2; %文献1所查系数
d=2.337; %同上
a=100e-3; %中心距(m)
R=125e-3; %诂计的折算后回转体径(m)
b=50e-3; %诂计的折算后回转体厚度(m)
p=7.85e3; %回转体的材料(45钢)密度(kg/m^3)
Jdn=0.5*pi*p*b*R^4 %由诂计的值计算折算后回转体转动惯量(kg*m^2)
A=Jdn*w^2/Mz;
M2=Jdn*1.35*w^2+Mz
%end of槽轮的驱动力矩计算
%槽轮的强度计算
Fmax=Mz*(c+d*A)/a %由诂计值计算的最大圆销作用力(N),文献[1]
Fn=Fmax; %接触压力(N)
rT=8e-3; %圆销半径(m)
u1=0.24; %槽材料(45钢)泊松比
E1=203e9; %槽材料弹性模量 (pa)
u2=0.33; %销材料(ZGuSn10P1锡青铜)泊松比
E2=110e9; %销材料弹性模量(pa)
RouH=1100e6; %最大接触应力(45钢,感应淬火,MQ,48HRC)
t=Fn/((pi*rT)*((1-u1^2)/E1+(1-u2^2)/E2)); %根据H.Hertz公式所得
Lmin=t/(1150e6)^2*1e3 %圆销与槽诂计最小接触长度(mm)
%end of槽轮的强度计算
%轴的直径诂算
A=120; %文献[3]所查用于计算轴径的系数
T=[100,Mz,M2]*1000; %链轮轴,槽轮轴,曲柄轴所受轴矩 (N.mm)
d=A*(T/9.55e6).^(1/3) %各轴的最小直径(mm)
%end of轴的直径诂算
%最小键长诂算
d=25; %轴径(mm)
h=7; %键高(mm)
RouP=110; %许用压应力(Mpa)
lmin=(4*T)/(d*h*RouP) %根据文献2式15.29所得最短键长(mm)
%end of最小键长诂算
结果:
Jdn =
0.1505
M2 =
60.2228
Fmax =
1.2039e+003
Lmin =
2.8422
d =
26.2531 22.1427 22.1701
lmin =
20.7792 12.4675 12.5138
Genshell.m
%本角本用来计算锁止弧理最大轮廊
clear;
usalconst;
i=0;
step=0.5;
while (i*step<=120)
t=i*deg*step;
b=atan(sin(pi/3-t)/(2-cos(pi/3-t)))
rouT=100-rouB(pi/6-b);
X(i+1)=-cos(t)*rouT;
Y(i+1)=sin(t)*rouT;
Rou(i+1)=rouT;
T(i+1)=t/deg;
i=i+1;
end;t
plot(T,Rou);
grid on;
计算结果:图3-6
shellI.m
%本脚本用来生成凸轮I理论轮廓和实际轮廓
clear;
usalconst;
i=1;
r0=35; %基圆半径
rT=6.5
e=11.5; %偏距
eta=1; %凸轮顺时钉转向
s0=(r0^2-e^2)^0.5;
st=0.05*deg;%步长
phi=0;
while(phi<2*pi)
x(i)=(sphiI(phi)+s0)*cos(eta*phi)-e*sin(eta*phi);
y(i)=(sphiI(phi)+s0)*sin(eta*phi)+e*cos(eta*phi);
dxdphi=dsphiI(phi)*cos(eta*phi)-eta*(sphiI(phi)+s0)*sin(eta*phi)-e*eta*cos(eta*phi);
dydphi=dsphiI(phi)*sin(eta*phi)+eta*(sphiI(phi)+s0)*cos(eta*phi)-e*eta*sin(eta*phi);
上一页 [1] [2] [3] [4] [5] [6] 下一页