摘要随着材料焊接技术的不断发展,在纳米尺度实现对材料及其结构的形貌、力学、热学等多项物理参数的精确测量有着重要意义,而扫描探针技术是当今纳米尺度材料物理性质测量的主要手段。文中将高品质因数的石英晶振作为超高灵敏度传感器,利用熔拉技术将石英光纤制作成nm级别的光纤探针,并粘合在音叉式石英晶振的前端。设计并制作了前置放大器,实现了对nA级别的微小电流完成100M的放大,并转化为电压信号,利用锁相放大器自动提取石英晶振传感器振幅与相位信息,测试得到粘合探针后的石英晶振品质因数Q值为3244,远高于传统微悬臂200左右的Q值,通过LabVIEW软件编程,配合PID(Proportion-Integration-Differentiation)反馈系统,实现了对纳米位移台的控制,对石英光纤探针与试样间距离的稳定控制的精度可以达到nm尺度,从而能够对焊接件纳米结构的形貌、力学等物理性质的测量。25292
关键词 石英晶振 石英光纤探针 控制系统 精密测量
毕业论文设计说明书外文摘要
Title Research of Mechanical Measurement Module about Simple Scanning Probe System based on quartz tuning fork
Abstract
With the continuous development of technology of welding, it is important to measure the morphology, the mechanical behaviors, the thermal properties and so on many physical parameters of material and its structure in nano scale. The scanning probe techniques is the major means of measurement on physical properties of materials in nano scale.
In this paper, the quartz tuning fork with high quality factor is used as ultra high sensitivity sensor,and the silica fiber is melting stretched as a probe in nano scale to stick to the quartz tuning fork. The preamplifier is designed and made to magnify the tiny current signal 100M times, and convert to the voltage signal. The lock-in amplifier can extract the amplitude and phase of quartz tuning fork sensor automatically. The quality factor of the quartz tuning fork with a quartz fiber probe is 3244 by measurement, and the quality factor is much higher than the traditional micro-cantilever which is about 200. The control of displacement platform uses the LabVIEW program and PID (Proportion Integration Differentiation) feedback technology. The distance between the quartz fiber probe and the sample can be stable controlled ,and the accuracy of the control is in nano scale. By the whole system, the measurements of morphology, mechanical and other physical properties of the nano structures of weldments can be realized.
Keywords Quartz tuning fork Quartz fiber probe Control system
Precise measurement
目 次
1 绪论 1
1.1 扫描探针显微镜的发展概况 1
1.2 微悬臂的制备技术的发展概况 3
1.3 本文研究的主要内容及意义 4
2 石英晶振微力传感器的设计与制作 6
2.1 石英晶振微力传感器的原理分析 6
2.2 石英晶振微力传感器的优势 9
2.3 纳米级光纤探针的设计制作 9
2.4 小结 10
3 扫描探针显微镜控制系统的设计与测试 12
3.1 前置电路的设计与测试 12
3.2 PID反馈系统的设计 17
3.3 位移台控制的设计 18
3.4 小结 26
结论 27
致谢 28
参考文献 29
附录A 石英晶振的振幅-频率数据 30
1 绪论
扫描探针显微镜(Scanning Probe Microscopy,SPM)是一种观测仪器,能够观测到材料表面的微观样貌、特征及各种物理化学性能,在近二十几年来得到了很好的发展,其主要研究材料表面的微观样貌,以及材料在微观尺度的物理、化学性质,对于材料微观组织的研究有着举足轻重的意义。SPM可以在纳米尺度上测量材料的表面样貌,从而能够对材料表面进行定域表征。随着人们对材料及其的微观性质的深入研究,扫描探针显微镜技术越来越受到重视,其发展也得到极大的促进,并且广泛应用于各不同方面。 基于石英晶振的简易扫描探针系统力学测量模块的研究:http://www.youerw.com/cailiao/lunwen_18990.html