摘要石墨相氮化碳本身具有一定的催化性能,但因自身存在缺陷而限制了其应用。研究发现通过控制石墨相氮化碳的微观形貌和修饰金属离子均可以提高材料的催化性能。而金属Pd纳米颗粒常用作特种催化剂。在与它复合后,石墨相氮化碳的催化性能能得到大幅提高。本论文通过硬模板法,以SBA-15为模板,NH2CN为原料,高温煅烧制备介孔石墨相氮化碳,再用金属Pd离子修饰得到石墨相氮化碳负载纳米金属Pd离子复合材料。产物经过电化学分析(CV、EIS、DPV)和透射电镜(TEM)表征。结果表明:介孔g-C3N4/Pd的催化性能明显高于介孔g-C3N4,且对4-氨基-1,2,4-三唑-5-酮(NTO)还原具有良好的催化活性。73339
毕业论文关键词 石墨相氮化碳 电化学分析
毕业设计说明书外文摘要
Title Graphite Carbon Nitride Supporting Metal Nanoparticles And Its Catalytic Application
Abstract Graphite carbon nitride has potential catalytic ablilty, but its application is limited due to its own defects。 The catalytic ability of the graphite carbon nitride can be improved by controlling the micrographs of the graphite carbon nitride and the combination of the other metal nanoparticles。 Palladium (Pd) nanoparticle is usually used as a special catalyst。 The catalytic properties of the graphite carbon nitride can be greatly improved with the combination with Pd nanoparticle。 In this work ,we empolyed SBA-15 as template and NH2CN as precursor material,synthesized a mesoporous graphite carbon nitride(mpg-C3N4) at a high temperature by hard template method, then mpg-C3N4 is modified with Pd nanoparticle,and g-C3N4/Pd was successfully applied to catalyze the electro-reduction process of 3-nitro-1,2,4-triazol-5-one (NTO)。 The mophology of mpg-C3N4 was characterized by Transmission Electron Microscope(TEM),and the electrobehaviors of mpg-C3N4 were characterized by electrochemical analysis (CV, EIS, DPV)。 The results showed that the catalytic performance of mesoporous g-C3N4/Pd was significantly better than that of mesoporous g-C3N4, mpg-C3N4/Pd presents good catalytic activity towards the electro-reduction of NTO。
Keywords G-carbon nitride electrochemical analysis
目 次
1 绪论 1
1。1 电化学催化 1
1。2 氮化碳 2
1。3 石墨相氮化碳 3
1。4 电化学分析方法 5
1。5 本文主要工作内容 8
2 氮化碳负载金属纳米颗粒及其催化应用 9
2。1 引言 9
2。2 实验部分 9
2。3 实验结果与讨论 12
结 论 21
致 谢 22
参 考 文 献 23
1 绪论
能源,材料和信息三者支撑起现代整个人类社会的发展,不断满足者人们日益增长的物质文化需求。人们在享受不断发展的科技带来的舒适和方便时,也在不断地消耗各种能源和材料,不断地排放各种废弃物。这使人们开始面临能源日益枯竭的问题,也饱尝着盲目和短视造成的生态环境不断恶化的苦果,同时也促使人们不断探求更有效地利用能源的方法和新型材料。论文网 氮化碳负载金属纳米颗粒及其催化应用:http://www.youerw.com/cailiao/lunwen_83660.html