4。2。2。Numerical results on basic multimodal functions and complex multimodal functions
For the multimodal functions, the global optimum is difficult to be located, especially for the complex multimodal func- tions。 In Table 3, the results for the basic multimodal functions are reported。 From this table, the proposed DFPSO algorithm can produce the very competitive results for most of the test functions。 In order to further validate the performance
Table 2
The function error values on the unimodal functions based on 50 runs。 The lowest values in each line for mean and best are highlighted in boldface。
Functions Index DFPSO PSO PSOw ALC-PSO SPSO2007 GPSO SPSO2011 CLPSO
f1 meana 4。17E—300 8。83E—17 1。44E—21 7。36E—70 7。15E—77 8。45E—191 9。09E—99 3。80E—12
bestb 2。54E—314 1。45E—78 8。29E—26 1。07E—89 3。56E—83 6。53E—205 2。64E—104 4。76E—13
stdc 0 4。39E—16 8。83E—21 5。15E—69 2。56e—76 0 3。50E—98 2。61E—12
p valued – 9。43E—14⁄ e 9。43E—14⁄ 9。43E—14⁄ 9。43E—14⁄ 9。43E—14⁄ 9。43E—14⁄ 9。43E—14⁄
f2 mean 7。92E—148 6。46E—32 9。42E—08 1。50E—31 4。33E—37 3。98E—67 3。01 3。20E—08
best 6。96E—153 1。64E—37 4。97E—16 4。49E—39 3。80E—46 3。26E—87 5。69E—01 1。14E—08
std 3。05E—147 2。02E—31 气味源定位的有限时间粒子群算法英文文献和中文翻译(20):http://www.youerw.com/fanyi/lunwen_101498.html