5. Craig J.V., Lancaster G.A., Taylor S. Infrared ear thermometry compared with rectal thermometry in children: a systematic review. Lancet. 2002;360:603–609. [PubMed]
6. Kistemaker J.A., Den Hartog E.A., Daanen H.A.M. Reliability of an infrared forehead skin thermometer for core temperature measurements. J. Med. Eng. Tech. 2006;30:252–261. [PubMed]
7. Kocoglu H., Goksu S., Isik M. Infrared tympanic thermometer can accurately measure the body temperature in children in an emergency room setting. Int. J. Pediatr. Otorhinolaryngol. 2002;65:39–43. [PubMed]
8. Rosenthal H.M., Leslie A. Measuring temperature of NICU patients – A comparison of three devices.J. Neonatal Nurs. 2006;12:125–129.
9. Stavem K., Saxholm H., Smith-Erichsen N. Accuracy of infrared ear thermometry in adult patients.Intensive Care Med. 1997;23:100–105. [PubMed]
10. Heusch A.I., Suresh V., McCarthy P.W. The effect of factors such as handedness, sex and age on body temperature measured by an infrared ‘tympanic’ thermometer. J. Med. Eng. Tech. 2006;30:235–241. [PubMed]
11. Pusnik I., Drnovsek J. Infrared ear thermometers-parameters influencing their reading and accuracy. Physiol. Meas. 2005;26:1057–1084. [PubMed]
12. Pusnik I., van der Ham E., Drnovsek J. IR ear thermometers: what do they measure and how do they comply with the EU technical regulation. Physiol. Meas. 2004;25:699–708. [PubMed]
13. Simpson R., Machin G., McEvoy H. Traceability and calibration in temperature measurement: a clinical necessary. J. Med. Eng. Tech. 2006;30:212–217. [PubMed]
14. International Organization for Standardization . Guide to the Expression of Uncertainty in Measurement. ISO; Geneva, Switzerland: 1993.
15. Eurachem . EURACHEM/CITAC Guide Quantifying Uncertainty in Analytical Measurement.Eurachem; Middlesex, UK: 2000.
16. Mohamed M.I., Aggag G.A. Uncertainty evaluation of shore hardness testers. Measurement.2003;33:251–257.
17. Fisicano P., Adriaens A., Ferrara E. Assessment of the uncertainty budget for the amperometric measurement of dissolved oxygen. Anal. Chim. Acta. 2007;597:75–81. [PubMed]
18. Chen C. Evaluation of measurement uncertainty for thermometers with calibration equations.Accredit. Qual. Assur. 2006;11:75–82.
19. Lu H., Chen C. Uncertainty evaluation of humidity sensors calibrated by saturated salt solutions.Measurement. 2007;40:591–599.
20. Nicholas J.V., White D.R. In: Radiation Thermometry Traceable Temperature. 1st ed. Sudenham P.H., Sussex T.W., editors. John Willey and Sons; Chichester, West Sussex, UK: 1994. pp. 283–326.
21. Myers R.H. Classical and Modern Regression with Application. 2nd ed. PWS and Kent Publishing; Boston, MA, USA: 1996.
22. Bruggemann L., Wennrich R. Evaluation of measurement uncertainty for analytical procedures using a linear calibration function. Accredit. Qual. Assur. 2002;7:269–273.
23. Krutchkoff R.G. Classical and inverse regression methods of calibration. Technometrics. 1967;9:25–439.
24. Grientschnig D. Relationship between prediction errors of inverse and classical calibration. Fresenius J. Anal. Chem. 2000;367:491–498.
25. Tellinghuisen J. Inverse vs. classical calibration for small data sets. Fresenius J. Anal. Chem.2000;368:585–588. [PubMed]
26. Chen C. Uncertainty evaluation of conductance moisture meters for rough rice. Biosys. Eng.2008;99:508–514.
摘要红外鼓膜温度计(且转折)是易于使用,并且具有快速的响应时间。它们被广泛用于人体温度测量。测量的精度和不确定性是这些米的重要性绩效指标。两个红外鼓膜温度计,布劳恩THT- 3020和欧姆龙MC- 510的性能进行了这项研究评估。温度校验仪的细胞进行了修改,作为黑体的标准温度。测量为两米的误差是由校准方程减少。的预测值可以符合ASTM标准的要求。不确定性的来源包括复制在固定温度下的标准偏差或校准方程的预测值,参考标准值和分辨率。不确定性分析表明,校准方程的不确定性是合并不确定性的主要来源。环境温度并没有对所测性能的显著作用。校准方程可以改善且转折的准确性。然而,这些方程没有改善且转折的不确定性。毕业论文 红外鼓膜温度计英文文献和中文翻译(12):http://www.youerw.com/fanyi/lunwen_16489.html