[9] AKIHIKO N, SHIGEO H. Walking and running of the quadruped wall-climbing robot[C]//Proceedings of IEEE International Conference on Robotics and Automation, San Diego, USA, May 8-13, 1994: 1 005-1 012.
[10]BACH F W, RACHKOV M, SEEVERS J, et al. High tractive power wall-climbing robot[J]. Automation in Construction, 1995,4(3): 213-224.
[11]YANO T, SUWA T, MURAKAMI M, et al. Development of a semi self-contained wall climbing robot with scanning type suction cups[C]//Proceedings of IEEE International Conference on Intelligent Robots and Systems, Grenoble, France, Sept. 7-11, 1997:900-905.
[12]KEISUKE A, SHIGEO H. Study of walking robot for 3 dimensionalterrain[C]//Proceedings of IEEE International Conference on Robotics and Automation, Nagoya, Japan, May 21-27, 1995:703-708.
[13]GUIDO L R, MICHELE M, GIOVANNI M, et al. A low-cost lightweight climbing robot for the inspection of vertical surface[J].Mechatronics, 2002, 12(1): 71-96.
[14]LAL T R, MUKHERJEE R, NING Xi, et al. Climbing the walls[J].IEEE Robotics & Automation Magazine, 2002, 9(4): 10-19. [15] SUN Dong, ZHU Jian, LAI Chiming, et al. A visual sensing
application to a climbing cleaning robot on the glass surface[J].Mechatronics, 2004, 14(10): 1 089-1 104.
[16]ZHANG Houxiang, ZHANG Jianwei, ZONG Guanghua, et al. Sky Cleaner 3: a real pneumatic climbing robot for glass-wall cleaning[J]. IEEE Robotics & Automation Magazine, 2006, 13(1): 32-41.
[17] JUN Xiao, XIAO Jizhong, NING Xi, et al. Fuzzy controller for wall-climbing microrobots[J]. IEEE Transactions on Fuzzy Systems,2004, 12(4): 466-480.
[18]QIAN Zhiyuan, ZHAO Yanzheng, FU Zhuang, et al. Design and realization of a non-actuated glass-curtain wall-cleaning robot prototype with dual suction cups[J]. International Journal of
Advanced Manufacturing Technology, 2006, 30(1): 147-155.
摘要:滑动爬壁机器人(SWCR)在全球范围内因为它的连续运动特点而应用,然而,空气泄露却引发了两个问题:巨大的功耗和噪声,而且他们约束了机器人的综合性能。到目前为止,有效的理论模型仍然缺乏解决SWCR的吸附性能问题的方法,论文网但给出了改善吸附力和利用率的方法,利用率技术研究可提高SWCR的吸附性能。利用运动机制的选择和密封压力分配影响并鉴于吸附力进行讨论,提供了相关参数优化的理论方法。在提高利用率的研究方向上,可根据抽吸系统的热力学和流体力学的详细分析结果进行拓展。在这种情况下,设计SWCR专用叶轮的关键是计算在参数影响与流体动力学(CFD)模拟的帮助下它的空气动力学性能。该机器人原型,BIT登山者,对其功能,如移动性,墙壁表面适应性,有效载荷能力,障碍以及壁面检查进行了测试。通过实验,以正常的壁面机器人吸附系统的粘附性能,在叶轮的额定转速,总吸附力可达到237.2 N,平均有效负压3.02千帕,同时设计误差仅3.8%而已,这表明了高效率。此外,根据实验发现,该机器人抽吸系统的静态压效率达到84%,利用率的吸附力81 %。该热力学模型和SWCR特定的叶轮设计方法能够有效提高SWCR的吸附性能和扩展这个机器人在不同的墙壁上的适用性。滑动爬壁机器人具有高附着力,高效率,重量轻的特点,同时,结构体积小,有效载荷性能好。 滑动爬壁机器人英文文献和中文翻译(7):http://www.youerw.com/fanyi/lunwen_16703.html