[5] S.C. Chen, W.R. Jong, Y.J. Chang, J.A. Chang, J.C. Cin, Rapid mold temperature variation for assisting the micro injection of high aspect ratio micro feature parts using induction heating technology, Journal of Micro Mechanics and Micro Engineering 16 (9) (2006) 1783–1791.
[6] S.C. Chen, H.S. Peng, J.A. Chang, W.R. Jong, Simulation and verification of induction
heating on a mold plate, International Communications in Heat and Mass Transfer 31 (7) (2004) 971–980.
[7] P.C. Chang, S.J. Hwang, Simulation of infrared rapid surface heating for injection molding, International Journal of Heat and Mass Transfer 49 (21–22) (2006) 3846–3854.
[8] M.C. Yu, W.B. Young, P.M. Hsu, Micro injection molding with the infrared assisted heating system, Materials Science and Engineering A 460–461 (2007) 288–295.
[9] S.C. Chen, R.D. Chien, S.H. Lin, M.C. Lin, J.A. Chang, Feasibility evaluation of gas- assisted heating for mold surface temperature control during injection molding process, International Communications in Heat and Mass Transfer 36 (8) (2009) 806–812.
[10] S.C. Chen, N.T. Chang, Y.C. Chen, S.M. Wang, Simulation and application of
injection–compression molding, Journal of Reinforced Plastics and Composites 18 (8) (1999) 724–734.
[11] Y.W. Lin, H.M. Li, S.C. Chen, C.Y. Chen, 3D numerical simulation of transient temperature field for lens mold embedded with heater, International Communica- tions in Heat and Mass Transfer 30 (9) (2005) 1221–1230.
[12] G.L. Wang, G.Q. Zhao, H.P. Li, Y.J. Guan, Research of thermal response simulation and mold structure optimization for rapid heat cycle molding process, respectively, with steam heating and electric heating, Materials and Design 31 (1) (2010) 382–395.
[13] X.P. Li, G.Q. Zhao, Y.J. Guan, M.X. Ma, Optimal design of heating channels for rapid
heating cycles injection mold based on response surface and genetic algorithm, Materials and Design 30 (10) (2009) 4317–4323.
[14] C.A. Sleicher, M.W. Rouse, A convenient correlation for heat transfer to constant and variable property fluids in turbulent pipe flow, International Journal of Heat and Mass Transfer 18 (5) (1975) 677–683.
[15] H.D. Baehr, K. Stephan, Heat and Mass Transfer, second ed, Springer, New York, 2006, pp. 628–639.注射成型是一种在塑料产业中最广泛使用的处理技术之一。模具表面温度是在塑料注塑成型过程中至关重要的。具有高的模具表面温度,该部分的表面质量会更好,虽然冷却时间将增加,循环时间也将变长。模具表面温度的降低将减少冷却时间,但对产品的表面质量是没有益处的。当前研究的一个关键要求是要提高模具表面的温度,同时仍然保持周期的时间不是太长。论文网
在最近几年,公司对于更薄,更轻,更好的机械性能的产品的要求是越来越重视。利用传统的注塑成型生产这种类型的产品充满挑战和困难。如翘曲,流痕和熔接线的问题经常出现。因此,一种新的注射成型技术,高速高温成型技术(RHCM)被提出。对比传统的注射成型,利用高速高温成型技术(RHCM),模具温度上升至目标值,然后,在填充工序结束后,模具将被用冷水冷却。与加热过程的帮助下,熔体可以很容易地填充到模腔在低喷射压力下。除此之外,表面缺陷,如熔接线,流痕,及漂浮性的纤文可以被消除。
高速高温成型技术加热过程中,有两种主要类型的加热系统中可以使用,表面加热和体积加热。在前面的组里,一些技术已经被研究。绝缘层被涂覆到模具基体,然后加热层被施加到绝缘层的模腔表面。加热层通过一对电极可快速加热,用绝缘层提高加热效率,降低消耗。另一方面,为了在填充过程中提高模具表面的温度,模腔表面的锡和聚四氟乙烯的涂层减少了从熔体的热量传递到模具中的材料,并增加模腔表面温度到25°C。在另一个研究项目中,在加热表面上,电磁感应线圈具有不同配置被用来加热腔表面,以减少熔接线,收缩和工件表面的其他缺陷。此外,红外加热系统,也适用于加热模具表面。该系统可以使用合适的设计加热一个或两个的半模的表面。 塑料注射成型英文文献和中文翻译(8):http://www.youerw.com/fanyi/lunwen_17293.html