dimensions. Analyses of those methods, particularly those performed by A.A. Aliseichik [10], V.G. Zinkovsky- Gorbatenko & Ye.A. Kravtsov [9], have demonstrated insufficient accuracy or a wide range of variation of the sought quantities, which renders those methods unsuitable for optimization design.
3. It is only in publications by N.F. Voyevodin [2], where the complete cycle of CS designing and determination of her main elements, considering CS classification for the purpose, intended, is provided. Even though the groundwork laid by Voyevodin (i.e. ensuring stability in operational conditions, the proper selection of counterweights, etc.) remains unchanged, the following arguments against it should be highlighted: a) the method developed by Voyevodin for the determination of mass measures and weight/overall dimensions, was based on historical data dated back to his time (i.e. the 50th of the previous century), b) progress in science and technology has brought about considerable modifications of CS topsides, c) new types of CS’s have been developed to perform new functions (voyages to open sea, oil/gas offshore operations), d) Voyevodin method was applicable for CS’s with topsides lifting capacity lower than 250 t.
3. Determination of analytical relations
Let’s obtain relations between variables (13) and principal ship’s elements. According to [4], the corrected metacentric height can be described as
Where zC, ri, zg are respectively, CS vertical center of buoyancy, transverse metacentric radius, and vertical center of gravity at a specified design load of the ship; mh is a total maximal correction for free surfaces, according to [4]:
In formula (15), i is the density of liquid in the i-th tank with free surface; ixi is a transverse moment of inertia of free surface area at =0 in the i-th tank with free surface. The combination of tanks with free surfaces shall be selected based on their worst effect on the initial stability of the ship. At initial design stages, it is allowable to assume i ≈ 1. The analysis of general arrangement options results in an approximate estimation of ixi in the following range:
where kMH = (1.65…2.47)·10-3 for CS equipped with the Heeling Compensation System (HCS); and kMH can be assumed to be zero for CS without the HCS. At operational drafts of the CS, the quantity zC is linear with d. For convenience purposes, it can be re-written using the coefficient:
According to [11], the transverse metacentric radius can be represented as
摘要:本文介绍了具有完全旋转顶面的大型承载能力起重机船的数值模型。该模型提供了一种使用版本设计方法确定主起重机船舶元件的方法,并进一步进行系统优化。文中建立了主要的分析方程来解决这个问题。从提供初始稳定性的角度确定船舶特征与元素之间的关系。一旦模型得到验证,对相对宽度和块系数对大型承载能力起重机船舶在运行状态下的位移的影响进行了调查。根据调查结果,对起重机船舶系统优化提供初步稳定性条件不足的结论进行了分析。
关键词:数值模型; 起重船设计; 系统分析; 起重船; 起重机顶部;
1.简介
船舶设计过程中最典型的特征是寻求妥协解决方案,使设计人员能够达到船舶的最高效率,并满足船舶系统优化的主要原则和许多相互矛盾的性能要求。事实上,优化是任何船舶开发的基本条件,优化问题在船舶设计的各个阶段和水平得到解决。
船舶设计理论涉及整个船舶的设计解决方案。版本优化方法是船舶设计理论的主要方法。 版本优化方法是基于一系列先前设计的版本中选择最佳船舶版本的系统变化元素。这样的组允许绘制表征船舶的各种质量的参数的图形以及她的有效性作为被优化的元件的函数。这些系统方法原则的设计完全实施,要求任何子系统和设施的设计应按照船舶整体优化的统一要求进行,只有在同时进行的情况下才能实现 船舶元素和子系统优化作为一个单一问题。我们将设计开发初期定义的船舶元素集合表示为元素x = { },i 属于I的向量,其中I是元素集合。我们将包括主要尺寸,块系数,固体和液体压载量等参数。同样,我们来介绍一下矢量 = { }作为表征第k个船舶子系统的变量的向量(k k,其中K是子系统集合, ,其中jk是第k个子系统的变量集合)。子系统的例子如下:船体,发电厂和电厂,流体动力设施,船舶安排,系统等。 大型承载能力起重机船的数值模型英文文献和中文翻译(3):http://www.youerw.com/fanyi/lunwen_203996.html