From the vibration analysis of STHE it is found that the
tube length has major impact on shell acoustic frequency,
the tube natural frequency, bundle cross flow, critical
velocity, vortex shedding ratio. From Table 2 and Fig-
ure 3 to Figure 7, it can be concluded that up to mid
span of the tube (i.e. 500 cm) the tube natural frequency,
bundle cross flow, critical velocity, and vortex shedding
ratio are gradually increasing & then decreases up to the
end of tube length. Also, the mechanisms of flow-in-
duced vibration are studied and the several main mecha-
nisms are introduced. We finally come to the conclusion
that the main parameter which largely affects the vibra-
tions caused due to flow are dependent on unsupported
tube length and varies at various locations across the tube
length as unsupported tube length varies. The various
other parameters which affect the flow induced vibration
are critical velocity, natural frequency of tubes, cross-
flow velocity and acoustic frequency.
8. References
[1] H. Hiromitsu, M. Kouichi, N. Eiichi and F. Tohru, “Vor-
tex Shedding from Tube Banks with Closely Mounted
Serrated Fin,” Journal of Environmentand Engineering,
Vol. 6, No. 1, 2011, pp. 69-80. doi:10.1299/jee.6.69
[2] C. W. M. van der Geld and J. M. W. M. Schoonen, “De-
sign Improvement of Shell and Tube Heat Exchanger
based on Practical Experience and Numerical Analysis,”
Design Report, Eindhoven University of Technology,
Netherlands, 1991, pp. 74-87.
[3] S. Wang, J. Wen and Y. Li, “An Experimental Investiga-
tion of Heat Transfer Enhancement for a Shell-and-Tube
Heat Exchanger,” Applied Thermal Engineering, Vol. 29
No. 11-12, 2009, pp. 2433-2438.
doi:10.1016/j.applthermaleng.2008.12.008
[4] V. K. Patel and R.V. Rao, “Design Optimization of Shell-
and-Tube Heat Exchanger Using Particle Swarm Opti-
mization Technique,” Applied Thermal Engineering, Vol.
30, No. 11-12, 2001, pp. 1417-1425.
doi:10.1016/j.applthermaleng.2010.03.001
[5] A. L. H. Costa and E. M. Queiroz, “Design Optimization
of Shell and Tube Heat Exchangers,” Applied Thermal
Engineering, Vol. 28, No. 14-15, 2008, pp. 1798-1805.
doi:10.1016/j.applthermaleng.2007.11.009
[6] R. Hosseini, A. Hosseini-Ghaffar and M. Soltani, “Ex-
perimental Determination of Shell Side Heat Transfer
Coefficient and Pressure Drop for an Oil Cooler Shell-
and-Tube Heat Exchanger with Three Different Tube
Bundles,” Applied Thermal Engineering, Vol. 27, No. 5-6,
2007, pp. 1001-1008.
doi:10.1016/j.applthermaleng.2006.07.023
[7] V. Hejazi, M. A. Akhavan-Behabadi and A. Afshari,
“Experimental Investigation of Twisted Tape Inserts Per-
formance on Condensation Heat Transfer Enhancement
and Pressure Drop,” International Communications in
Heat and Mass Transfer, Vol. 37, No. 9, 2010, pp. 1376-
1387. doi:10.1016/j.icheatmasstransfer.2010.07.021
[8] I. Conté and X. F. Peng, “Numerical and Experimental
Investigations of Heat Transfer Performance of Rectan-
gular Coil Heat Exchangers,” Applied Thermal Engi-
neering, Vol. 29, No. 8-9, 2009, pp. 1799-1808.
doi:10.1016/j.applthermaleng.2008.08.013
[9] Y. Li, X. Jiang, X. Huang, J. Jia and J. Tong, “Optimiza-
tion of High-Pressure Shell-and-Tube Heat Exchanger for
Syngas Cooling in an IGCC,” International Journal of
Heat and Mass Transfer, Vol. 53, No. 21-22, 2010, pp.
4543-4551. doi:10.1016/j.ijheatmasstransfer.2010.04.038
摘要:本论文将通过分析流体诱导振动来设计优化管壳式换热器,并提供简易的方法。流体诱导振动会造成管壳式换热器的管子破坏,而振动分析有助于其设计优化。流体诱导振动造成管子破坏的主要原因是管壳式换热器的尺寸,研究发现,当管壳式换热器尺寸增大时,它的表面积增大,管子的数量随之增加,因此,了解并且分析振动变得十分困难。此外,研究表明流体诱导振动分析是机械和传热设计的重要组成部分。细节设计、装配、检测与分析工作由阿法拉伐(印度)有限公司及Pune-10公司执行。 管壳式换热器优化设计英文文献和翻译(5):http://www.youerw.com/fanyi/lunwen_2548.html