Contrast this cookbook knowledge with theory bound knowledge. When the theory is shown in some way or other to be flawed fundamentally, it is replaced. That means that what we thought we knew to be the case, isn’t – which hardly sounds like knowledge to me. However, a good cookbook providing stress calculations can be used anywhere, anytime, as long as you factor in the appropriate contingencies. Just reflect on the basis of the metaphor – a good cookbook makes it possible for anyone to prepare a good meal.
Let’s go one step further and contrast Vincenti’s account of the engineering design process with the activity of science. I think it has been shown in sufficient detail in a number of places, by a number of people, that there is no such thing as the scientific method, i.e., that there exists one method which insures objectivity and guarantees the production of universal, certain and true knowledge. One appeal to the theory-based nature of scientific work should dispel any lingering illusions. In light of the fact that a scientist working within a theory is exploring the domain circumscribed by that theory, the direction of his or her research, i.e., the kind of research he or she will undertake, will be theory–determined. On the other hand, while the domain of the theory is necessarily where the research will be directed, there is no guide supplied by the theory as to what should be investigated and how. Further, there is no one method that works for all sciences. Consider Astronomy. Given the kind of one time only observations that we find in astronomy – replication, traditionally a cornerstone of scientific method, at least in principle, is impossible. Does this make astronomy not a science, hardly. On the other hand, Vincenti’s account of the engineering design process provides specific and definite structure to the
process of proceeding through the design process.
We can also go beyond Vincenti and look at the work of Larry Bucciarelli (Designing Engineers, Cambridge: MIT Press), who denies that there is one single design process in engineering. Bucciarelli observes that no single unique design is dictated by the nature of the object being designed or the problem to be solved. But his objection stems not from the denial of design in engineering, but rather from a fine-grained understanding of the nature of the contingencies associated. That is, with Bucciarelli, we can find processes whereby the give and flow of ideas and the importation of the relevant contingencies follow the kind of pattern that Vincenti suggests, only in a more complicated way, when you consider the different types of communities interacting. The important point here is that in engineering design, there is at least a beginning point, for Vincenti, it is the problem, for Bucciarelli it is the object. Both see that whatever processes are at work are dynamic and interactive, but they have a task-oriented beginning point, but no such beginning point is given for scientific research.
Philosophical Problems
Two possible consequences of the cookbook nature of engineering knowledge are: (1) That such knowledge can be transported across fields and (2) it can be used anywhere – the fundamentals of dam building do not change – the contingencies of the particular circumstances may dictate one approach over another, but the basics will remain solid. In contrast, scientific knowledge is not clearly "transportable" across fields in the same way as engineering knowledge. One crucial obstacle presents itself: The problem of incommensurability.
The problem of incommensurability is a philosophical problem that came to the forefront in large part with Kuhn's characterization of the nature of scientific change. For Kuhn, fundamental change in science occurs through paradigm replacement, with his view of incommensurability applying, primarily, across paradigms. A paradigm for Kuhn is many things. However, for the process of this discussion let us consider it as a complete system of thought, including methodological rules, metaphysical assumptions, practices, and linguistic conventions. Two paradigms are incommensurable, it is alleged, because claims in different paradigms cannot be compared so as to determine which claim from which paradigm is true. 机械设计制造及其自动化英文参考文献和翻译(6):http://www.youerw.com/fanyi/lunwen_366.html