4. Hill, D. Further studies of the injection moulding process. Appl.Math. Modeling 1996, 20, 719–730.
5. Galantucci, L.M.; Spina, R. Evaluation of filling conditions ofinjection moulding by integrating numerical simulations andexperimental tests. Journal of Materials Processing Technology2003, 141, 266–275.
6. Wang, Q.; Jin-Ping, Q.; He, L. Effect of vibration parameters of electromagnetic dynamic plastics injection molding machine on mechanical properties of polypropylene samples. Journal of Applied Polymer Science 2006, 102, 972–976.
7. Zhong, Z.W.; Yang, H.B. Development of a vibration device for grinding with micro vibration. Materials and Manufacturing Processes 2004, 19, 1121–1132.
8. Zhong, Z.W.; Lin, G. Diamond turning of a metal matrix composite with ultrasonic vibrations. Materials and Manufacturing Processes 2005, 20, 727–735.
9. Liu, Y.-J. Rheological equation for polymer melt under the action of vibration. Plastic, Rubbers and Composites 2005, 34, 54–58.
10. Ibar, J.P. United States Patent: 5885495.
11. Yin, X.; Qu, J. Experimental study of the vibration-assisted MIM process on cavity presure. Journal of Thermoplastic Composite Materials 2006, 16, 375–383.
12. Zheng, Y.; Kai, Z.S.; Jie, Z.; Li, M.C.; Chixing, Z. Effect of vibration on rheology of polymer melt. Journal of Applied Polymer Science 2002, 85, 1587–1592.
13. Ya馿z, F.I.; Sánchez, V.S. Moldeo por Inyección de Plásticos; Centro de Investigación en Qímica Aplicada: México, 2001.
14. Liu, Y.-J. Elastic behavior of polymer melt extruding trough capillarity with an additional sinusoidal vibration. Polymer Bulletin 2006, 56, 599–606.
15. Claveria, I.; Javierre, C.; Ponz, L. Method for generation of rheological model to caracterize non-conventional injection molding by means of spiral mold. Journal of Material Processing
Technology 2005, 162–163, 477–483.
16. Piau, J.M.; Piau, M. Easier flow of viscoplastic materials with ultrasonic longitudinal wall motion. Journal of Non-Newtonian Fluid Mechanics 2002, 104, 185–226.
17. Abu-Dheir, N.; Khraisheh, M.; Saito, K.; Male, A. Silicon morphology in the autectic Al-Si alloy using mechanical mold vibration. Material Science and Enginering A 2005, 393, 109–117.
18. Martins, M.; Covas, J.A. Polymer melt flow through channels with vibrating walls. Key Engineering Materials 2002, 230–232,200–302.
Copyright of Materials & Manufacturing Processes is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for inpidual use.
通过使用振动模具配件改善注塑模具过程
最近,有不少学者认为,要优化聚合物中的熔流是通过改变聚合物熔体粘度。有一些化工产品有助于解决面提到的问题,但这些产品是会改变分子性质的聚合物。最近使用非化学的方法使振动技术在生产过程得以应用。上述方法的问题存在于重大修改注射机的必要性或开发的一种新型机器。本研究的新颖性是提供一个机械装置通过不牺牲在注入的部分聚合物性能的诱导振动修改融化聚合物的粘度,但是那不意着对机器或者模具做重大的修改。改造过的这种装置是一个简单的模具配件,使方便用户对现有注塑机的最终改造,它减少了生产成本。为了提高注射机的注射效率,对高密度聚乙烯进行了实验,在频率大约3赫兹是达到高峰,这时提高了30%。 振动模具配件改善注塑模具英文文献和中文翻译(4):http://www.youerw.com/fanyi/lunwen_5338.html