毕业论文

打赏
当前位置: 毕业论文 > 外文文献翻译 >

无符号Laplace多项式数学应用英文文献和翻译(2)

时间:2016-11-13 16:07来源:毕业论文
证明 因为 是 正则图, 且 ,因此由(14)得 (18) 3.生成树个数 如果 是 正则图,则 since (19) 由此给出 (20) 又由图 是一个正 则图, 参见文献[3,16] (21)


证明 因为  是 正则图,  且 ,因此由(14)得
      (18)
3.生成树个数
  如果 是 正则图,则
         since        (19)
由此给出
               (20)
又由图 是一个正 则图,   参见文献[3,16]  
               (21)
用  表示生成树的个数,参见文献[3,16] 知
             (22)
在这里我们以无符号数拉普拉斯算子给出的生成树。
定理8:如果  是 个顶点的 正则图,则
证明 由(22)得
4、小结
    方程(2)建立了无符号拉普拉斯多项式和图的特征多项式之间的关系.方程本文来自优尔\文(论"文?网,毕业论文 www.youerw.com 加7位QQ324~9114找原文(9)和(14)以图的特征多项式表示了线图和细分图的特征多项式.由这些结论的结果,方程(12)和(17)以图的特征多项式的导数给出了一个正则图的线图和细分图的特征多项式.这些结果不同于文献[17,18]给出的. 无符号Laplace多项式数学应用英文文献和翻译(2):http://www.youerw.com/fanyi/lunwen_53.html
------分隔线----------------------------
推荐内容