PIGLET: a computer program for the analysis anddesign of pile groups under general loading conditions. Soil ReportTR91, CUED/D, Cambridge University, England, 1980.[8] Banerjee PK, Driscoll PM. Three-dimensional analysis of raked pilegroups. Proc Inst Civil Eng 1976;61:653–71.[9] Kuhlemeyer RL. Static and dynamic laterally loaded floating piles.J Geotech Eng Div, ASCE 1979;105(2):289–304.[10] Reese LC, O’Neill MW, Smith RE. Generalized analysis of pilefoundations. J Soil Mech Found Div, ASCE 1970;96(1):235–50.[11] Chow YK. Three-dimensional analysis of pile groups. J Geotech Eng,ASCE 1987;113(6):637–51.[12] O’Neill MW, Ghazzaly OI, Ha HB. Analysis of three-dimensionalpile groups with nonlinear soil response and pile–soil–pile interaction.In: 9th Annual OTC in Houston, 1977.[13] Hoit M, McVay MC, Hays C. Florida pier computer program forbridge substructure analysis: model and methods. In: Proceedings ofthe design of bridges for extreme, Atlanta, 1996.[14] Kitiyodom P, Matsumoto T. A simplified analysis method for piledraft and pile group foundations with batter piles. Int J Numer AnalMeth Geomech 2002;26:1349–69.[15] McVay MC, Shang T, Casper R. Centrifuge testing of fixed-headlaterally loaded battered and plumb pile groups in sand. Geotech TestJ, ASTM 1996;19(3):41–50.[16] US Army Corps of Engineers. Engineering and design: design of pilefoundations. Engineer Manual, No. 1110-2-2906, 1991.[17] Hrennikoff A. Analysis of pile foundations with batter piles. Trans.ASCE 1950;115 (paper no. 2401).[18] Saul WE. Static and dynamic analysis of pile foundation. J Struc Div,ASCE 1968;94(5):1077–100.[19] Reese LC, Wang ST. Group 6.0 for Windows, Analysis of a group ofpiles subjected to axial and lateral loading, Ensoft, Inc., Austin, TX,2004.[20] Clancy P, RandolphMF. An approximate analysis procedure of piledraft foundations. Int J Numer Anal Methods Geomech1993;17:849–69.[21] Zhang HH, Small JC. Analysis of capped pile groups subjected tohorizontal and vertical loads. Comput Geotech 2000;26:1–21.[22] Choi CK, Lee WH. Versatile variable-node flat-shell element. J EngMech, ASCE 1996;122(5):432–41.[23] Reese LC, Wang ST. Analysis of load versus settlement for an axiallyloaded deep foundation. TZpile version 1.0, Ensoft, Austin, 1997.[24] Reese LC, Wang ST. A program for the analysis of piles and drilledshafts under lateral loads. LPILE version 4.0, Ensoft, Austin, 2000.[25] Zhang L, McVay MC, Lai P. Numerical analysis of laterally loaded3 · 3to7 · 3 pile groups in sands. J Geotech Eng, ASCE1999;125(11):936–46.[26] O’Neill MW, Murchison JM. An evaluation of p–y relationship insands. A report to the American Petroleum Institute, PRAC 82-41-1.University of Houston (TX), 1983.[27] Korea Ministry of Construction and Transportation, The Koreaspecification for bridges, 2000.
摘要考虑了桩的刚度之间的耦合,桩帽,和列的一种数值方法已被开发用于群桩支承柱的响应分析,特别注重考虑桩帽的灵活性。这是一种采用 t–z/q–z 和 p–y 曲线的负载转移用于单桩的分析的方法。有限元法是用来结合桩的刚度与帽和列的刚度。发达国家的数值方法被核查与群桩其他数值方法的比较结果。通过比较研究,已经发现在一组中的单个桩上的最大负载是受桩帽的灵活性高度。在目前的分析桩帽的横向载荷和弯矩的预测,比在FBPier3.0更为保守,它确定了更大的横向载荷和弯矩各种桩帽的厚度。
毕业论文关键词:数值计算方法;耦合;支持群桩柱;桩帽的灵活性
1、简介
桩常用于团体支持的桥梁结构。有很多分析和数值群桩的设计方法。这些方法可以创分为三种不同类型:(1)当量的人员单桩方法[1 - 5],(2)弹性的方法[6 - 9],和(3)一般三维负载转移方法(10 - 14)。
第一种类型的方法是基于一个无依据的分析单个桩结合组有效率因素,或组放大系数代表的桩土桩互动和桩帽的相互作用。在简单的这种方法,即用一个电子表格来计算的设计参数,是其主要优点。然而,这方法有一定的限制,它只适用于均匀间隔的群桩且不大于近似方格的安排,不提供荷载分布在一组沿桩深度[5]。第二个类型的方法是一个连续的方法,那是一个三维线弹性桩周围土壤连续体相互作用因子的方法[6]明德林的解决方案,并直接连续模型[8]通常包括在这一类。应当指出的是,这种方法最初是一个弹性的方法,虽然已经开发了多种变型,允许土壤分层模型、桩土滑移、三维的几何形状等。源'自^优尔;文,论`文'网]www.youerw.com 考虑桩帽柔性的群桩阵列英文文献和中文翻译(8):http://www.youerw.com/fanyi/lunwen_56444.html