毕业论文

打赏
当前位置: 毕业论文 > 外文文献翻译 >

钢筋混凝土英文文献及中文翻译(3)

时间:2017-05-30 08:54来源:毕业论文
4. Common failure modes of steel reinforced concrete Reinforced concrete can fail due to inadequate strength, leading to mechanical failure, or due to a reduction in its durability. Corrosion and free


4. Common failure modes of steel reinforced concrete
Reinforced concrete can fail due to inadequate strength, leading to mechanical failure, or due to a reduction in its durability. Corrosion and freeze/thaw cycles may damage poorly designed or constructed reinforced concrete. When rebar corrodes, the oxidation products (rust) expand and tends to flake, cracking the concrete and unbonding the rebar from the concrete. Typical mechanisms leading to durability problems are discussed below.
4.1 Mechanical failure
Cracking of the concrete section can not be prevented; however, the size of and location of the cracks can be limited and controlled by reinforcement, placement of control joints, the curing methodology and the mix design of the concrete. Cracking defects can allow moisture to penetrate and corrode the reinforcement. This is a serviceability failure in limit state design. Cracking is normally the result of an inadequate quantity of rebar, or rebar spaced at too great a distance. The concrete then cracks either under excess loading, or due to internal effects such as early thermal shrinkage when it cures.    
Ultimate failure leading to collapse can be caused by crushing of the concrete, when compressive stresses exceed its strength; by yielding or failure of the rebar, when bending or shear stresses exceed the strength of the reinforcement; or by bond failure between the concrete and the rebar.
4.2 Carbonation
Carbonation, or neutralisation, is a chemical reaction between carbon dioxide in the air with calcium hydroxide and hydrated calcium silicate in the concrete. The water in the pores of Portland cement concrete is normally alkaline with a pH in the range of 12.5 to 13.5. This highly alkaline environment is one in which the embedded steel is passivated and is protected from corrosion. According to the Pourbaix diagram for iron, the metal is passive when the pH is above 9.5.[5] The carbon dioxide in the air reacts with the alkali in the cement and makes the pore water more acidic, thus lowering the pH. Carbon dioxide will start to carbonate the cement in the concrete from the moment the object is made. This carbonation process will start at the surface, then slowly move deeper and deeper into the concrete. The rate of carbonation is dependent on the relative humidity of the concrete - a 50% relative humidity being optimal. If the object is cracked, the carbon dioxide in the air will be better able to penetrate into the concrete. When designing a concrete structure, it is normal to state the concrete cover for the rebar (the depth within the object that the rebar will be). The minimum concrete cover is normally regulated by design or building codes. If the reinforcement is too close to the surface, early failure due to corrosion may occur. The concrete cover depth can be measured with a cover meter. However, carbonated concrete only becomes a durability problem when there is also sufficient moisture and oxygen to cause electro-potential corrosion of the reinforcing steel.
One method of testing a structure for carbonation is to drill a fresh hole in the surface and then treat the cut surface with phenolphthalein indicator solution. This solution will turn [pink] when in contact with alkaline concrete, making it possible to see the depth of carbonation.
An existing hole is no good because the exposed surface will already be carbonated.
4.3 Chlorides
Chlorides, including sodium chloride, can promote the corrosion of embedded steel rebar if present in sufficienty high concentration. Chloride anions induce both localized corrosion (pitting corrosion) and generalized corrosion of steel reinforcements. For this reason, one should only use fresh raw water or potable water for mixing concrete, insure that the coarse and fine aggregates do not contain chlorides, and not use admixtures that contain chlorides.
It was once common for calcium chloride to be used as an admixture to promote rapid set-up of the concrete. It was also mistakenly believed that it would prevent freezing. However, this practice has fallen into disfavor once the deleterious effects of chlorides became known. It should be avoided when ever possible. 钢筋混凝土英文文献及中文翻译(3):http://www.youerw.com/fanyi/lunwen_8022.html
------分隔线----------------------------
推荐内容