Native oxide surfaces of stainless steel 316L and Nitinol alloys and their constituent metal oxides, namely nickel,chromium, molybdenum, manganese, iron, and titanium, were modified with long chain organic acids to better understand organic film formation. The adhesion and stability of films of octadecylphosphonic acid, octadecylhy-droxamic acid, octadecylcarboxylic acid, and octadecylsulfonic acid on these substrates were examined in this study.The films formed on these surfaces were analyzed by diffuse reflectance infrared Fourier transform spectroscopy,contact angle goniometry, atomic forcemicroscopy, andmatrix-assisted laser desorption ionizationmass spectrometry.The effect of the acidity of the organic moiety and substrate composition on the film characteristics and stability is discussed. Interestingly, on the alloy surfaces, the presence of less reactive metal sites does not inhibit film formation.Introduction
Self-assembled monolayers (SAMs) of thiols on gold andsilanes on silicon have been model systems for numerous applica- 9837
tions, including adhesion,
1
corrosion inhibition,
2
biomaterials,
3,4
biosensors,
5
wettability,
6
click chemistry,
7
and organic electronics.
8
The structure and conformation of thin films of thiols on gold are
based on the strong interaction between sulfur and gold. These SAMs
present functional tail groups in a consistent manner, allowing the
films to be used in a variety of applications.
9-12
While forming SAMs
onmetals and alloys relevant to a particular biomedical or industrial
application represents a more straightforward approach to funct-
ionalizing these materials, the chemistry of these surfaces has not
been as well-studied, inmost cases, and is therefore not predictable.
Modification of metal oxide surfaces by organic monolayer
formation has been studied since Nuzzo and Allara’s seminal
work in the 1980s.
13
Since then, many metal oxides such as
*Corresponding author. E-mail: gawalte@duq.edu.
(1) Rozsnyai, L. F.; Wrighton, M. S. Chem. Mater. 1996, 8(2), 309.
(2) Nozawa, K.; Nishihara, H.; Aramaki, K. Corros. Sci. 1997, 39(9), 1625–
1639.
(3) Kovaric, B. C.; Kokona, B.; Schwab, A.D.; Twomey,M. A.; de Paula, J. C.;
Fairman, R. J. Am. Chem. Soc. 2006, 128(13), 4166–4167.
(4) Wang, D. A.; Feng, L. X.; Ji, J.; Sun, Y. H.; Zheng, X. X.; Elisseeff, J. H.
J. Biomed. Mater. Res., Part A 2003, 65A(4), 498–510.
(5) Svedhem, S.; Hollander, C. A.; Shi, J.; Konradsson, P.; Liedberg, B.;
Svensson, S. C. T. J. Org. Chem. 2001, 66(13), 4494–4503.
(6) Jiang, Y. G.; Wang, Z. Q.; Yu, X.; Shi, F.; Xu, H. P.; Zhang, X. Langmuir
2005, 21(5), 1986–1990.
(7) Lummerstorfer, T.; Hoffmann, H. J. Phys. Chem. B 2004, 108(13), 3963–
3966.
(8) Park, B. S.; Heo, S. J.; Kim, C. S.; Oh, J.-E.; Kim, J.-M.; Lee, G.; Park,
W.H.;Chung, C.-P.;Min, B.-M. J. Biomed.Mater. Res., Part A 2005, 74A(4), 640–
651.
(9) Cox, J. D.; Curry, M. S.; Skirboll, S. K.; Gourley, P. L.; Sasaki, D. Y.
Biomaterials 2002, 23(3), 929–935.
(10) Fan, F. R. F.; Yao, Y. X.; Cai, L. T.; Cheng, L.; Tour, J. M.; Bard, A. J.
J. Am. Chem. Soc. 2004, 126(12), 4035–4042.
(11) Nitahara, S.; Akiyama, T.; Inoue, S.; Yamada, S. J. Phys. Chem. B 2005,
109(9), 3944–3948.
(12) Collman, J. P.; Devaraj, N. K.; Chidsey, C. E. D. Langmuir 2004, 20(4),
1051–1053.
(13) Allara, D. L.; Nuzzo, R. G. Langmuir 1985, 1,45–52.
(14) Tao, Y. T. J. Am. Chem. Soc. 1993, 115(10), 4350–4358.
(15) Tao, Y. T.; Hietpas, G. D.; Allara, D. L. J. Am. Chem. Soc. 1996, 118(28),
6724–6735.
(16) Folkers, J. P.; Gorman, C. B.; Laibinis, P. E.; Buchholz, S.; Whitesides,
G. M.; Nuzzo, R. G. Langmuir 1995, 11(3), 813–824.aluminum, 反应釜内胆材料316L合英文文献和中文翻译:http://www.youerw.com/fanyi/lunwen_8688.html