(4)重复步骤2和3,直到所有活动的时间被计算完为止。
对于以上所示的最早时间的计算过程,可以以公式的形式表示如下:
当活动间的逻辑关系为SS,则计算如下:
ESj= max{ ESi + STS } (3.24)
当活动间的逻辑关系为FS,则计算如下:
ESj= max{ ESi + Di + FTS } (3.25)
当活动间的逻辑关系为FF,计算如下:
ESj= max{ ESi + Di - Dj + FTF } (3.26)
当活动间的逻辑关系为SF,计算如下:
ESj= max{ ESi - Dj + STF } (3.27)
在计算出各个活动的最早开始和结束时间之后,就可以计算活动的自由时差,在计算前导图的自由时差时应注意,由于引入了多种逻辑关系,并且活动间可以存在延时,所以其计算方法与箭线图的计算方法不一样。
3.4.6 前导图自由时差计算
对于前导图的活动间,除了延时还可以存在时间间隔(LAG),一般可以按照下面的方式计算。
当活动间的逻辑关系为SS,则计算如下:
LAGi-j= ESj - ESi - STS (3.28)
当活动间的逻辑关系为FS,则计算如下:
LAGi-j= ESj - EFi - FTS (3.29)
当活动间的逻辑关系为FF,计算如下:
LAGi-j= EFj - EFi - FTF (3.30)
当活动间的逻辑关系为SF,计算如下:
LAGi-j= EFj - ESi - STF (3.31)
则对于任意一个活动,其自由时差为:
FFi= min{ LAGi-j } (3.32) 质量管理关键节点研究+文献综述(14):http://www.youerw.com/guanli/lunwen_2243.html