摘要使用4,4´ -二氟二苯酚、9,9´ -双(4-羟基苯基)芴和4,4-(优尔氟异丙叉)双酚 A,通过嵌段共聚合成了嵌段共聚聚醚砜聚合物。然后以氯甲基乙醚为氯甲基试剂,SnCl4为催化剂,成功实现聚合物的氯甲基化。通过1H NMR 谱计算得到理论IEC值为 1.58 mmol/g。在浇膜过程中,通过加入一定量的三乙烯二胺(DABCO),成功得到了一系列多嵌段接枝交联型阴离子交换膜。通过溶解性的降低,证明了交联结构的形成。测试了交联膜材料的尺寸变化、吸水性、电导率、机械强度及稳定性等性能。结果表明,相对于未交联的bPAES-g-0 膜,具有20%交联度 bPAES-g-20 优异的综合性能,在60oC 水中的离子导电率达到50mS cm-1。在 MFC性能评价结果表明,bPAES-g-20 电阻率为343.64Ω•m ,远低于商用膜(862.62Ω•m) ,证明装置 bPAES-g-20 的MFC 具有更小的内阻。 27379
毕业论文关键词 微生物燃料电池 阴离子交换膜 交联 离子电导率
Title The study on the application of anion exchange membrane in microbial fuel cell Abstract A series of multiblock polysulfone polymers (PAES) were prepared from 4,4-difluoro-diphenol ,9,9'-bis (4-hydroxy) fluorene and 4,4 (hexafluoroisopropylidene) Bisphenol A. The - CH2Cl groups were introduced to the PAES chains by Freidel - Crafts reaction from the ClCH2OCH2CH3 under the catalysis of the SnCl4. The ionic exchange capacity (IEC) of the obtained polymer was 1.58 mmol/g, which was calculated from the 1HNMR spectra. The crosslinked structures were formed by the addition of the diamine of DABCO during the membrane casting. The insolubility characteristics in DMAc, NMP and DMF for the diamine treatment membranes ensured the form of the crosslinking structure. The properties of the membranes such as size change, water uptake, ionic conductivity, mechanical properties and stability were measured. The results showed that the membrane with 20% crosslinking ratio of bPAES-g-20 owned the excellent integration performance comparing the un-crosslinking one, which showed the ionic conductivity of 50 mS cm-1 in 60 oC water. During the MFC operation, the MFC equipped bPAES-g-20 membrane showed the electric resistant rate of 343.64Ω•m, which was much lower than that one equipped commercial membrane (862.62Ω•m). Suggesting the lower inner electric resistant of the former. Keywords : Microbial fuel cell Anionic exchange membrane Cross linking treatment ionic conductivity
目 录
1 引言 . 1
1.1 微生物燃料电池 1
1.2 阴离子交换膜 2
1.3 本文研究意义及主要内容 . 4
2 实验部分 6
2.1 实验仪器及设备 6
2.2 原料与试剂 6
2.3 药品的精制 7
2.4 嵌段型聚合物的合成 . 7
2.5 聚合物的氯甲基化 . 8
2.6 膜的制备和处理 9
2.7 性能表征 10
2.8 微生物燃料电池的构建 . 12
3. 结果与讨论 . 13
3.1 阴离子交换膜的制备 . 13
3.2 尺寸变化 14
3.3 核磁测定与IEC 13
3.4 吸水率 15
3.5 电导率 16
3.6 机械强度 17
3.7 稳定性 18
3.8 溶解性 14
3.9 在微生物燃料电池上的应用 . 18
结 论 . 20 阴离子交换膜在微生物燃料电池中的应用研究:http://www.youerw.com/huaxue/lunwen_21852.html