摘要超级电容器由于具备较高的理论容量、高充电和放电率、高功率密度和长循环寿命而成为了能量存储研究方向中的热门方向。对于超级电容器而言,其重要性能与电极材料有着密切的联系。本论文正是基于对电极材料的研究,以NiO-Ni(OH)2复合材料为研究对象,通过水热-煅烧两步法制备目标二元复合材料,对复合体系的结构进行表征探究并研究其电化学性能。考察不同条件下制备的复合物的比电容及性能,探索煅烧温度以及煅烧时间对NiO和Ni(OH)2之间协同作用的影响。利用XRD、TEM等方法对制备的样品进行表征,并测试所得产品的电化学性能,通过分析以确定最佳制备条件。经实验探索到在水热温度140 ℃、煅烧温度200 ℃及煅烧时间4 h等条件下所得复合物的比电容在电流密度0.5 A/g下,可高达1760.4 F/g,使其有望成为超级电容器的电极材料。30728
毕业论文关键词 超级电容器; 电化学性能; 氢氧化镍; 氧化镍
毕业设计说明书外文摘要
Title Synthesis of NiO-Ni(OH)2 Composites and their Properties
Abstract
Supercapacitors have attracted intensive research interest in energy storage due to its high theoretical capacitance, prompt charge/discharge rate, high power density and excellent cycling capability. For a supercapacitor, its capacity is determined by the electrode materials. This thesis takes NiO-Ni(OH)2 composite materials as the research object based on the electrode research and obtains the binary composites by hydrothermal-calcination synthesis, which can be studied by the characterization of composites’ structure and their electrochemical performances. The specific capacitance and properties of the composites can be analyzed to explore the effects of different calcination temperature and calcination time on the synergies between NiO and Ni(OH)2. The microstructure of obtained composites are characterized by XRD, TEM and other methods, and its electrochemical performances are also studied, which the optimum preparation conditions is founded through the analysis. The optimum conditions of hydrothermal temperature (140 ℃), calcination temperature (200 ℃) and calcination time (4 h) has been concluded by a series of experiments, and the conducted electrochemical measurements demonstrate that the obtained composite exhibits a high specific capacity of 1760.4 F/g at a current density of 0.5 A/g, which makes it promising for electrode materials applied in supercapacitors.
Keywords supercapacitor; electrochemical performances; Ni(OH)2; NiO;
目 次
1 引言 1
1.1 超级电容器 1
1.2 石墨烯-金属氧化物复合材料 3
1.3 氢氧化镍 4
1.4 氧化镍 5
1.5 本论文的工作 5
2 实验部分 6
2.1 药品与仪器 6
2.2 实验步骤 7
2.3 样品表征 8
2.4 本章小结 10
3 结果与讨论 11
3.1 氧化镍-氢氧化镍复合材料的表征 11
3.2 电化学测试 12
结论 19
致谢 20
参考文献 21
1 引言
随着能源需求的不断增加,生态的可持续发展得到越来越多的关注,而这也亟需人类开发一些新的能量系统应用于替代能源的能量储存和转换。而正是因为这种现状,超级电容器由于拥有电池与传统静电电容器本身未拥有的优势而受到追捧。换句话说,在所有的新型能量存储/转换装置中,电化学电容器(也称为超级电容器)由于其优异的功能优势脱颖而出[1]。它结合了介电电容器和充电电池两者的优点,具备较佳的理论容量,高功率密度,高充电与放电率和长循环寿命。 NiO-Ni(OH)2复合物的合成及其性能研究:http://www.youerw.com/huaxue/lunwen_26600.html