摘要:计算机信息的保密问题显得越来越重要,无论是个人信息通信还是电子商务发展,都迫切需要保证Internet网上信息传输的安全,需要保证信息安全。其中,信息安全的核心是密码技术。
关键字:信息安全密码技术方案论证应用
1.对称密码体制
对称密码体制是一种传统论文网密码体制,也称为私钥密码体制。在对称加密系统中,加密和解密采用相同的密钥。因为加解密密钥相同,需要通信的双方必须选择和保存他们共同的密钥,各方必须信任对方不会将密钥泄密出去,这样就可以实现数据的机密性和完整性。对于具有n个用户的网络,需要n(n-1)/2个密钥,在用户群不是很大的情况下,对称加密系统是有效的。但是对于大型网络,当用户群很大,分布很广时,密钥的分配和保存就成了问题。
2.非对称密码体制
非对称密码体制也叫公钥加密技术,该技术就是针对私钥密码体制的缺陷被提出来的。在公钥加密系统中,加密和解密是相对独立的,加密和解密会使用两把不同的密钥,加密密钥向公众公开,谁都可以使用,解密密钥只有解密人自己知道,非法使用者根据公开的加密密钥无法推算出解密密钥,故其可称为公钥密码体制。如果一个人选择并公布了他的公钥,另外任何人都可以用这一公钥来加密传送给那个人的消息。私钥是秘密保存的,只有私钥的所有者才能利用私钥对密文进行解密。
3.目的和意义
(1)解决大规模网络应用中密钥的分发和管理问题
采用分组密码。序列密码等对称密码体制时,加解密双方所用的密钥都是秘密的,而且需要定期更换,新的密钥总是要通过某种秘密渠道分配给使用方,在传递的过程中,稍有不慎,就容易泄露。公钥密码加密密钥通常是公开的,而解密密钥是秘密的,由用户自己保存,不需要往返交换和传递,大大减少了密钥泄露的危险性。同时,在网络通信中使用对称密码体制时,网络内任何两个用户都需要使用互不相同的密钥,只有这样,才能保证不被第三方窃听,因而N个用户就要使用N(N–1)/2个密钥。采用公钥密码体制,N个用户只需要产生N对密钥。由此可见,只有公钥密码才能方便。可靠地解决大规模网络应用中密钥的分发和管理问题。
(2)实现网络中的数字签名机制
对称密钥技术由于其自身的局限性,无法提供网络中的数字签名。这是因为数字签名是网络中表征人或机构的真实性的重要手段,数字签名的数据需要有惟一性。私有性,而对称密钥技术中的密钥至少需要在交互双方之间共享,因此,不满足惟一性。私有性,无法用做网络中的数字签名。相比之下,公钥密码技术由于存在一对公钥和私钥,私钥可以表征惟一性和私有性,而且经私钥加密的数据只能用与之对应的公钥来验证,其他人无法仿冒,所以,可以用做网络中的数字签名服务。
二。方案论证
1.介绍RSA公钥密码体制
RSA是Rivest,Shamir,Adleman提出数论的非对称密钥体制。RSA是建立在大整数分解的困难上的,是一种分组密码体制。RSA建立方法如下:首先随机选两个大素数p,q,计算n=p•q;计算欧拉函数φ(n)=(p-1)(q-1);任选一个整数e为公开加密密钥,由e求出秘密解密密钥加密/解密:将明文分成长度小于位的明文块m,加密过程是:c=E(m,e)=modn解密过程是:m=D(c,d)=modn
2.RSA公钥密码体制的安全性分析
RSA的安全性依赖于大整数的因式分解问题。实际上,人们推测RSA的安全性依赖于大整数的因式分解问题,但谁也没有在数学上证明从c和e计算m需要对n进行因式分解。可以想象可能会有完全不同的方式去分析RSA。然而,如果这种方法能让密码解析员推导出d,则它也可以用作大整数因式分解的新方法。最难以令人置信的是,有些RSA变体已经被证明与因式分解同样困难。甚至从RSA加密的密文中恢复出某些特定的位也与解密整个消息同样困难。
3.设计RSA系统的注意事项
(1)经过对RSA安全性的分析,可以得出使用RSA时应该注意的事项:
随机选择足够大素数;在使用RSA的通信网络协议中,不应该使用公共模;不要让攻击者得到原始的解密结果;解密密钥d相对模数n来说不应过小;应该或者加密密钥大;或者被加密的信息m总是大而且m不能是一些已知值的乘积,后面一种情况可以在加密前对m填充随机值实现。相关的消息不能用同样的密钥加密,加密前对消息进行随机值填充破坏消息之间的代数联系及相关性,但是要注意填充算法的选择;应该使获得对任意值的原始签名不可能。被签名的消息应该与模数差不多大,而且不是一些已知值的乘积;
(2)RSA系统的参数选择
RSA系统是第一个将安全性植因子分解的系统。很明显地,在公开密钥(e,N)中,若N能被因子分解,则在模N中所有元素价的最小公倍数(即所谓陷门)T=φ(N)=(p-1)(q-1)即无从隐藏。使得解密密钥d不再是秘密,进而整个RSA系统即不安全。虽然迄今人们尚无法证明“,破解RSA系统等于因子分解。但一般相信“RSA系统的安全性,等价于因子分解。即:若能分解因子N,即攻破RSA系统;若能攻破RSA系统,即分解因子N(相信,但未证明)。因此,在使用RSA系统时,对于公开密钥N的选择非常重要。必须使得公开N后,任何人无法从N得到T。此外,对于公开密钥e与解密密钥d,亦需有所限制。否则在使用上可能会导致RSA系统被攻破,或应用在密码协议上不安全。
[1][2]下一页
加密与解密算法的研究【1931字】:http://www.youerw.com/jisuanji/lunwen_158424.html