TMS320C2812电子磁罗盘补偿技术研究_毕业论文

毕业论文移动版

毕业论文 > 物理论文 >

TMS320C2812电子磁罗盘补偿技术研究

摘要电子磁罗盘是一种利用地球磁场测量方向的重要导航工具,高精度的电子磁罗盘对提高导航定位技术,促进航空、航海以及国防事业发展具有重要的现实意义。已有电子磁罗盘面临的体积、重量、功耗大,误差补偿困难等问题亟待解决。
本论文介绍了电子磁罗盘的特性,详细研究了各类误差补偿算法的优缺点,采用基于BP神经网络的补偿算法,并且设计了由磁阻传感器HMC1021/1022、DSP微处理器TMS320C2812、微加速度计ADXL335组成的电子磁罗盘。根据传感器的输出特点,利用DSP芯片编写系统程序代码;分析磁阻传感器的各类误差来源,并通过误差补偿算法来提高系统的精度。
实验测试表明,研制的电子磁罗盘体积小、重量轻、功耗低小、成本低,在0-360度范围内航向角的测量精度从补偿前的19.2度减小到8度范围内,验证了基于BP神经网络的补偿算法的有效性,并且实现了实时补偿,满足了导航系统的要求。5453
关键词  电子磁罗盘  磁阻传感器  误差分析   补偿算法   
毕业论文设计说明书(论文)外文摘要
Title  Study on error compensation methods of Electronic Magnetic Compass(EMC)  
Abstract
EMC is an important device for navigation. High precise EMC plays a realistic role in improving navigation positioning technology and in the development of navigation , navigation and national defense. The present EMC   has some problems need to be handled such as big volume, weight, power consume, hard to compensate error. This paper introduces the characters of EMC and detailed  studys the relative merits of all kinds of compensation algorithm. Using the compensation algorithm which is based on the BP neural network and designing an EMC consisted of magnetic sensor HMC1021/1022,acceleration sensor ADXL335 and DSP microprocessor TMS320C2812.According to the characteristic of magnetic sensor, using the disposing signal of DSP to write the procedure of the system. On a variety of possible errors of the magnetic sensor in analysis, a corresponding compensation is proposed to approach to improve the system accuracy. Experimental tests show that the developed EMC is small volume, low weight, power consume and cost. The heading angle of measurement accuracy is decreased to   from   between  , and realize real-time compensation, in order to meet the requirement of the navigation system.
 Keywords  EMC   magnetic sensor  error analysis    compensation algorithm  

目   录

1  绪论    1
1.1  课题研究背景    1
1.2  课题研究意义    1
1.3  国内外研究发展现状    2
1.4  研究内容及论文结构    3
2  电子磁罗盘的测量原理及误差补偿    4
2.1  磁阻效应    4
2.2  电子磁罗盘方向测量的角度参数    6
2.3  电子磁罗盘的测量原理    7
2.4  电子磁罗盘误差分析    8
2.4.1  传感器制造误差    8
2.4.2    电子磁罗盘安装误差    9
2.4.3    载体磁场误差    9
2.5  电子磁罗盘误差补偿算法的选择    10
2.5.1  基于椭圆拟合的补偿算法    10
2.5.2    基于BP神经网络的误差补偿算法    13
2.6  小结    15
3  电子磁罗盘的硬件设计与实现    16
3.1  硬件设计总体方案    16
3.2  电子磁罗盘的主要元器件选择    16 (责任编辑:qin)