无线传感器网络节点定位国内外研究现状和发展趋势
时间:2017-02-10 19:43 来源:毕业论文 作者:毕业论文 点击:次
在未知节点获得自身到3个或3个以上锚节点的距离(或角度)后可以采用三角测量法、三边测量法、极大似然估计法或最小最大法计算自身的位置。 三角测量定位方法也称为信号到达角度(AOA)定位法或方位测量定位法。假设未知节点A(坐标为(x0,y0)),分别测得锚节点B、C(坐标分别为(x1,y1),(x2,y2))发出信号的到达角度分别为θ1和θ2,则:tan(θi)=x0-xiy0-yi(i=1,2)通过求解上述非线性方程,可以得到未知节点的位置(x0,y0)。5666 三边测量法在无线传感器网络中,坐标系大多是二文空间,因此,只要知道一个未知节点到3个或3个以上锚节点的距离就可以确定该未知节点的坐标。在基于测距的定位算法中,三边测量法是计算坐标的基本途径。三边测量定位法的基本原理就是求3个已知半径和坐标圆心的圆的交点。三边测量法的缺点是:若在测距过程中存在误差,上述3个圆无法交于一点,以存在误差的d1,d2,d3去解方程时便无法得到正确解。因此,在实际计算坐标时,一般不采用上述解方程的方法,而采用极大似然估计或其他方法。 极大似然估计法。已知1、2、3等n个锚节点的坐标分别为(x1,y1),(x2,y2),…,(xn,yn),它们到未知节点D的距离分别为d1,d2,d3,…,dn,假设D的坐标为(x,y),联立方程可以得到未知节点D的坐标。极大似然估计法的缺点在于需要进行较多的浮点运算,其计算开销带来的能量消耗仍不容忽视。 最小最大法的基本思想是依据未知节点到各参考节点的距离测量值及其坐标构造若干个限制框,即以参考节点为圆心,未知节点到该参考节点的距离测量值为半径所构成圆的外接正方形,取这些正方形交叉区域,认为该交叉区域的几何中心为未知节点的估计坐标。 发展趋势 近10年来,无线传感器网络节点定位问题的研究取得了丰富的成果。最近几年,很多人提出移动锚节点的定位算法,利用移动锚节点辅助定位未知节点,可用在未能部署锚节点的区域,一方面减少了硬件成本,同时,与现有的经典算法结合,在低噪声环境下定位精度较高,同时计算耗能少,可以广泛应用于无线网络传感器中的节点定位,这也将会成为日后节点定位的研究热点。 (责任编辑:qin) |