二维高阶非线性量子体系涡旋态的研究
时间:2020-10-31 23:41 来源:毕业论文 作者:毕业论文 点击:次
摘要非线性薛定谔方程(NLSE)是量子体系非线性进化的一类重要方程, 在许多领域中都有十分重要的应用。因此,研究分析这一类方程的模型具有重要的物理意义。波色-爱因斯坦凝聚,Bose-Einstein condensation (BEC)是科学巨匠爱因斯坦在80 年前预言的一种新物态。这里的“凝聚” 与日常生活中的凝聚不同,它表示原来不同状态的原子突然“凝聚”到同一状态(一般是基态)。即处于不同状态的原子“凝聚”到了同一种状态。在一些简单的情况下,凝聚粒子的状态可以用一个非线 性 Schrodinger 方程描述,又名 Gross-Pitaevskii 或Ginzburg-Landau方程。像许多其他系统,涡旋可以存在于BEC。 用变分法解析求解多方近似下的二维超冷量子体系的涡旋孤子解;编程计算孤子的动力学演化;研究该模型下孤子的稳定性。58987 毕业论文关键词:非线性薛定谔方程,孤子,量子化涡旋态, 玻色爱因斯坦凝聚Abstract Nonlinear Schrodinger equation (NLSE) is a kind of important equation of thenonlinear evolution of quantum system, and it has very important applications inmany fields. Therefore, it is of great significance to study the model of this kind. BoseEinstein condensates, Bose Einstein condensation (BEC) is master of science Einsteinin 80 years ago predicted as a new state of matter. Here, "cohesion" and theaggregation is different, it indicates that the original state of the atoms suddenly"condensed" to the same state (generally ground state). The atoms in different states"condense" to the same state. In some simple cases, the state of condensed particlescan be described by a nonlinear Schrodinger equation, also known as theGross-Pitaevskii or Ginzburg-Landau equation. Like many other systems, the vortexcan exist in BEC. Using variational method to get the vortex soliton solutions of twodimensional ultracold quantum system, the dynamical evolution of the soliton iscalculated, and the stability of the soliton under the model is studied. Keywords: nonlinear Schrodinger equation, soliton, quantum vortex, BoseEinstein condensation 目录 第一章 绪论. 1 1.1 背景介绍 1 1.2 研究现状6 1.3 本文主要内容.6 第二章解决方法. 7 第三章 结果与讨论. 12 致谢.13
参考文献.14 |