LBS融合智能手机传感器的室内定位方法_毕业论文

毕业论文移动版

毕业论文 > 计算机论文 >

LBS融合智能手机传感器的室内定位方法

随着社会的进步和移动互联网技术的高速发展,人们对于定位的需求越来越大,基于 位置的服务(Location Based Service, LBS)显然已成为当前研究的热点。定位的精确性是评 价一个位置服务好坏的关键因素。LBS 主要应用于定位、导航、跟踪等方面,主要有室 外定位和室内定位两种。目前,基于全球定位系统(Global Positioning System, GPS)定位有 较为成熟的算法和较高的精度,已经成为室外定位的主要途径。然而,GPS  在封闭区域(如室内)的表现却不尽如人意,由于障碍物对于信号的阻挡或屏蔽作用,导致 GPS 定 位的精确度大大降低。因此,如何在室内进行精确的定位、导航是当前研究的重点。78515

本文深入研究了基于惯性传感器的定位系统,提出了一种基于智能手机传感器的室内 定位方法。本方法主要基于二次积分算法来实现室内定位系统,该算法主要对加速度传感 器采集到的加速度值进行积分得到速度,再对计算出的速度进行积分得到位移,并通过融 合加速度计、陀螺仪、磁力计的卡尔曼滤波算法计算出航向,得到运动物体的坐标。最后, 在安卓平台上开发了一款显示运动轨迹的 APP,同时,把 PC 作为服务器端通过 Socket 进行实时位置坐标的传送并绘制运动轨迹。

本文设计并实现了上述系统,进行相应的实际测试,得出结论验证了本文的方法。

毕业论文关键词 室内定位 安卓 惯性传感器 卡尔曼滤波 Socket

毕 业 设 计 说 明 书 外 文 摘 要

Title   An Indoor Positioning Method by Fusing Sensors of Smart Phone

Abstract With the progress of society and rapid development of mobile internet technology, people demand more and more on the location, Location Based Service (LBS) apparently has become a research hot spot。 The accuracy of localization is the key to evaluate the quality of a location service。 LBS is mainly used in positioning, navigation and tracking, there are two kinds of positioning methods, they are outdoor positioning and indoor positioning。 At present, global positioning system which has relatively mature algorithm and high precision, has become the main way of outdoor positioning。 However, due to the obstacles’ blocking or shielding effect to signal, the performance of GPS in enclosed areas (such as indoor areas) is unsatisfactory。 Therefore, how to carry out accurate positioning and navigation in indoor areas is the key of current research。 

This paper is based on the understanding of inertial sensor positioning system, and finally puts out an indoor positioning system using a smart phone contained inertial sensors。 This method is mainly based on continuous integration algorithm to realize the indoor positioning system。 Firstly, the algorithm calculates the velocity by integrating the acceleration, and then calculates the displacement by integrating the velocity, after that we get the azimuth by using Kalman Filtering Algorithm which fusing the accelerometer, gyroscope and magnetic。 Finally, we get the coordinates of the object in motion。 At the same time, I developed an APP as a client and the PC as a server to show the trajectory, the client sends the real-time location coordinates to server through socket。 

This paper designed and implemented the system, after the corresponding practical tests, we draw the conclusion and confirmed the method of this paper。 

Keywords Indoor  Positioning   Android   Inertial  sensor   Kalman Filtering Socket

1  绪论 。 1 

1。1 研究背景及意义  1 

1。2 国内外研究现状  2 

1。3 本文研究内容  3 

1。4 本文组织结构  3  (责任编辑:qin)