毕业论文

打赏
当前位置: 毕业论文 > 数学论文 >

数项级数求和的常用方法(2)

时间:2024-01-16 23:00来源:毕业论文
当 时, ;当 时, ,其中 为首相, 为公比。 例1 求等比数列(几何级数) 的和。 解 当 ﹤1时, 所以 例2 求级数 的和。 解 因为则所以原级数的和数 。

当 时, ;当 时, ,其中 为首相, 为公比。

   例1  求等比数列(几何级数)

的和。 解 当 ﹤1时,

所以 例2  求级数 的和。

解 因为则所以原级数的和数 。

3。1。3  利用错位相减法求和

    利用错位相减法求和,即通过乘以等比级数的公差 ,然后在利用四则运算后用等差或者等比数列公式求和。

   例3  求级数 的和。

解 因为 两式相减得

所以则3。1。4  裂项相消法求级数的和

  利用裂项相消法求级数的和,即将级数的通项拆成前后可以相抵消的部分,然后通过变形,有理化分子或者分母,三角函数恒等变形等处理,达到裂项相消的目的;或将级数直接经过变形有理化处理后,进行裂项相消法,求得最终结果。

数项级数求和的常用方法(2):http://www.youerw.com/shuxue/lunwen_200819.html
------分隔线----------------------------
推荐内容