摘要随着信息的发展,每天都会产生大量数据信息。我们通过数据挖掘技术对于大量的数据进行分析,让我们从大量的数据中提取有效信息。分类回归树(Classification and Regression Tree, CART)作为常用的决策树方法,因为其分类的高准确率等一系列优点而被广泛地运用于数据挖掘各种实践中。本文先对数据挖掘基本方法做简单介绍,着重讲述分类回归树算法的原理以及优点。51917
在银行的信用评估系统中,往往追求评估算法的稳定性与更低的误判比率。且由于分类回归树算法的高分类准确率,在银行等金融机构中常被用于个人信用评估,在本文中将简单的研究分类回归树在信用评估中的原理以及各方面的优势。
With the development of information, a large amount of data is produced every day. People always use data mining techniques to analyze the data to extract useful information from large amounts of data. The Classification and Regression Tree (Classification and Regression Tree, CART) as a common decision tree method because of its high accuracy rate classification of a series of advantages are widely used data mining techniques. This paper will be introduced basic methods of data mining, classification and regression tree algorithm focuses on the principles and advantages.
In the credit assessment system of bank, often seek evaluation algorithm stability and lower the ratio of false positives. Due to the high classification accuracy and classification and regression tree algorithm, in banks and other financial institutions often for personal credit scoring, in this paper we will study a simple classification and regression tree principle in Credit Evaluation and various advantages.
毕业论文关键词:数据挖掘; 分类回归树;决策树;信用评估;二叉树;剪枝
Keyword: Data Mining; CART;Decision Tree;Credit Evaluation;Binary Tree;Prune
目录
1. 引言 5
1.1 背景 5
1.2 研究对象 5
2. 数据挖掘相关理论 5
2.1 数据挖掘的介绍 5
2.2 数据挖掘的应用举例 6
2.3 数据挖掘的主要方法 6
3. 分类回归树算法的原理 7
3.1 分类回归树算法的概述 7
3.2 分类回归树算法原理 7
3.2.1 树的构造 7
3.2.2 剪枝过程 9
4. 分类回归树算法在个人信用评估中的实际应用 11
4.1 研究问题及其背景 11
4.2 分类树在个人信用评估中的应用原理 11
4.2.1 利用个人信用数据生成的分类树有如下: 12
4.2.2 分类树在个人信用评估中的分叉规则 分类回归树方法的原理及其应用:http://www.youerw.com/shuxue/lunwen_55710.html