提出的交替最小化方法,虽然没有明确要求信道对称性,但是从算法上看,它与
分布式干扰对齐算法是等价的。文献[19]提出了基于加权最小均方误差
(Minimum mean square error, MMSE)算法,较最大化信干噪比算法而言,该算
法的目标值更优,而且不同用户数据率优先级可以调整。性能更优的最大化信干
噪比算法和基于 MMSE的迭代算法由文献[20,21]分别给出。高信噪比条件下,
线性干扰对齐算法中的最大信干噪比算法是最优的且局部收敛性呈指数级[22]
。Schmidt 等人通过对单数据流 MIMO 系统(N×N,1)
K(K=2N-1)的研究,指出了
大系统中(用户数 K和天线数趋于无穷)线性干扰对齐的信噪比偏移和高信噪
比时的解析近似[23]。
1.3 论文结构和内容
本文主要研究了干扰对齐解析解符号扩展算法,迭代分布式算法。
总共分为四章,其结构如下:
第一章绪论,从MIMO 技术开始,分析了本课题的研究意义,并介绍了干
扰对齐目前的研究现状,最后引出本文的研究内容。
第二章干扰对齐基本概念,首先介绍了预编码技术,获得CSI的两种方法,
以及基本概念自由度,随后给出了几种基本的干扰信道模型。
第三章干扰对齐解析解符号扩展算法,主要给出了干扰对齐的基本原理,具
体讨论了下面两种信道环境中的解析解算法:完全已知发送端信道状态信息
(channel state information at the transmitters, CSIT)的3 个用户 SISO-IC和已知
部分CSIT 的4 中干扰信道情况。最后仿真给出两种情形下的和速率曲线。
第四章干扰对齐分布式算法,分析了有限文信号空间中干扰对齐的若干问题,
介绍了如下迭代分布式对齐算法:Min-WLI,Max-SINR 算法。最后从和速率方
面仿真分析了上述算法的性能差异及它们之间的等价性。 干扰协作多蜂窝无线通信系统的干扰管理和抑制技术研究 (4):http://www.youerw.com/tongxin/lunwen_5469.html