摘要随着海洋工程的快速发展,海洋资源的利用逐渐增加。因此,常用于海洋能源开发、海洋矿物开采、海上救援打捞等海洋工程中的水下焊接与切割技术的地位越来越难以撼动。但由于目前水下切割的应用范围以较浅水深为主,对大水深环境下的水下切割的研究较少。因此,本文采用水下熔化极电弧切割技术,一种利用药芯割丝在工件之间引燃后产生的电弧热将金属熔化进行切割的方法。本文介绍了水下熔化极电弧切割的原理,设计了模拟深水切割的系统,进行了水下切割工艺实验。探究了在大水深环境下水下熔化极电弧热切割工艺参数对切口成形的影响,分析了水下切割电弧稳定性的影响因素。实验结果表明:在深水环境下,送丝速度、切割电压与切割速度的适当匹配对切割质量有决定性影响;切割过程中,电弧稳定性受水深影响较大,同时受到送丝速度、切割电压等因素的影响。87001
毕业论文关键词:水下切割;熔化极电弧切割;药芯割丝;深水环境
Abstract With the rapid development of marine engineering, use of marine resources is gradually increased。 Therefore, commonly used in marine energy development, the status of the marine mineral exploration, salvage and rescue at sea and other marine works underwater welding and cutting technology, more and more difficult to shake。 However, as the scope of application to underwater cutting mainly shallow depth study of the underwater environment of large depth of cut less。 So we use underwater MIG arc cutting technology, a use of the drug core, cutting an arc between the workpiece after hot wire ignition generated to melt the metal cutting method。This article describes the underwater MIG arc cutting principle, designed to simulate deep water cutting system for underwater cutting process experiments。 Explores the melt at high water depth environmental extreme heat of the arc cutting process parameters on the impact of the cut-formed, analyzes the influencing factors underwater cutting arc stability。The results showed that: In deep water, the wire feed speed, voltage and suitable matching cutting cutting speed have a decisive influence on the cutting quality; the cutting process, arc stability influenced by water depth, at the same time by the wire feed speed, voltage, etc。 cutting influencing factors。
Keywords: Underwater cutting; Consumable electrode arc cutting; Flux-cored cutting; Deep water
目录
第一章 绪论 1
1。1本课题研究背景及意义 1
1。2水下切割技术发展现状 1
1。2。1水下切割技术分类 1
1。2。2常用水下切割的发展 2
1。2。2 水下熔化极电弧热切割发展 7
1。2。3水下切割技术存在的一些问题 9
1。3本课题研究目的及内容 10
1。3。1研究目的 10
1。3。2研究内容 10
第二章 水下熔化极电弧热切割原理及系统 11
2。1水下熔化极电弧热切割原理 11
2。1。1 水下熔化极电弧热切割定义 11
2。1。2 水下电弧的形成 11
2。1。3 水下熔化极电弧热切割过程 12
2。2水下熔化极电弧热切割系统 13
2。2。1 切割电源