摘 要半导体激光器凭借其电光转换效率高、波长覆盖范围广、可靠性好、体积小等诸多 优点,在光纤通信、材料加工、生物医疗、军事防御等领域得到广泛的应用。但光电转 换的同时,也伴随热电转换,即有废热产生,近年来半导体激光器的发展方向是追求更 高的输出功率、更长的连续工作时间,与此同时产生的废热也急剧增加,这使得有源区 温度迅速升高,严重影响器件本身的电光性能、可靠性以及寿命。79137
目前半导体激光器的散热研究主要集中在热管理材料的研发,巴条和其他形式阵列 的微通道热沉、风冷散热器等器件结构方面,致力于降低热阻、提高导热系数、优化热 膨胀系数等,从而提高激光器热管理水平。但对于焊料、热沉、导热胶等相关部件的尺 寸及热物理性能等因素与芯片内部最高温度的定量关系,报道并不常见。
鉴于半导体激光器散热问题的关键性,结合目前研究现状,本文以大功率半导体激 光器封装模块为研究对象,采用 ANSYS Workbench 软件数值模拟激光器工作时封装模 块温度分布,分析焊料、热沉、导热胶、冷水板温度及位置等相关参数对封装模块散热 特性及芯片内部最高温度的影响,最后根据分析结果给出了激光器封装部件的尺寸、导 热系数或材料的设计和选择原则。结果表明,焊料厚度小于 24μm 时,其导热系数对芯 片内部最高温度影响较弱,无高阻层形成;芯片内部最高温度随着热沉长或宽尺寸及导 热系数的增大,呈指数形式下降,随着热沉厚度的增大呈对数形式升高;当导热胶导热 系数大于 20W/m·K、厚度小于 30μm 时,芯片温度趋于稳定;冷水板温度与芯片内部最 高温度呈比例系数为 1 的线性相关性,且冷水板位于热沉底部时散热效果相对较好。
毕业论文关键字:半导体激光器;热特性;散热;有限元
Abstract Semiconductor laser module have many advantages, such as high electro-optic conversion efficiency, wavelength coverage, good reliability and small volume。 So the semiconductor laser have been widely used in optical fiber communication, material processing, biological medical treatment, military defense and other fields。 The semiconductor laser can produce photoelectric conversion with thermoelectric conversion and waste heat。 In recent years, the higher output power and more continuous working time is the development direction of the semiconductor laser。 The semiconductor laser will produce more heat and the temperature of the active region increased rapidly。 The increase in temperature also affects the electro-optic performance, reliability and lifetime of the semiconductor laser。
At present, the research of heat dissipation of semiconductor laser is mainly focused on the development of thermal management materials, micro channel heat sink, air-cooled heat sink and so on。 Researchers are committed to reducing the thermal resistance, improve thermal conductivity, optimize the thermal expansion coefficient to achieve the purpose of improving the level of laser thermal management。 But there are few reports about the relationship between the size and thermal physical properties of the components such as solder, heat sink, thermal conductivity, and the maximum temperature of the chip。
It is an important subject to study the heat dissipation of semiconductor laser。 Combined with the current research status, this paper takes the high power semiconductor laser package module as the research object。 In this paper, the workbench ANSYS software is used to simulate the temperature distribution of the package module during the operation of the laser。 And this paper analyzes the influence of solder, heat sink, heat conductive adhesive, cold water board temperature and position and other related parameters on the thermal characteristics of the package module and the maximum temperature of the chip。 Finally, according to the analysis results, the design and selection principles of the size, thermal conductivity or material of the package of the laser are given。 The results show that when the thickness of the solder is less than 24 μm, the thermal conductivity of the solder is less than the maximum temperature of the chip, and no high resistance layer is formed。 The maximum temperature of the chip is decreased with the increase of the heat sink length or width size and