摘要本文综合地讲述了储氢合金的历史发展和目前国内外的研究现状,对此类合 金的一项重要研究是作为镍氢电池的负极材料,并在全球范围多个领域得到了广 泛地应用。介绍了稀土系,镁系,钛系,锆系及钒基固溶体系等储氢合金的发展, 在此基础上选取了 La0。85Mg0。15Ni2。75Co1。05 储氢合金作为研究对象,经过成分的设 计,熔炼后手工研磨,将不同元素粉末混合均匀后压片,制作成电极片,选取 850℃,900℃,950℃三个不同的退火温度,保温同样的时间 8 小时,测试其退 火温度的不同对电化学性能和动力学性能所产生的影响。退火处理后合金电极的 组织更加均匀,成分偏析减少,综合的电化学性能有所提高,根本原因在于合金 相结构中的主相 A5B19 的相丰度在增加,但是对比不同温度条件下的相丰度我们 发现并不是一直在升高而是随着退火温度的增加呈现先增后减的变化趋势,这是 因为部分合金元素在高温时的产生烧损和挥发使得主相的减少降低了合金综合 性能。综合来看,900℃时合金电极性能最佳,最大放电容量为 394。44mA/g,容 量保持率为 82。36wt%,活化性能和循环稳定性都有着较大的提升。 81121
毕业论文关键词:储氢合金 La0。85Mg0。15Ni2。75Co1。05 退火温度 相结构 电化学性能
Abstract This paper describes the development status to study the history and the present hydrogen storage alloys at home and abroad, an important study of such alloy is a nickel-hydrogen battery anode material, and a plurality of global scale has been widely applied。 It describes the development of rare earth-based, magnesium-based, titanium-based, zirconium and vanadium-based solid solution system, and hydrogen storage alloys, based on selected La0。85Mg0。15Ni2。75Co1。05 hydrogen storage alloy as the research object, through component design, manual grinding after melting, the powder was mixing different elements tablet, made into an electrode sheet, select
850 ℃, 900 ℃, 950 ℃ three different annealing temperature, holding time of 8 hours
the same, the annealing temperature tested different electrochemical properties and dynamics of the impact of the performance。 After annealing the alloy electrode is more uniform, reducing segregation, integrated electrochemical performance has improved, the fundamental reason lies in the structure of the main phase alloy phase A5B19 relative abundance increases, but the contrast under different temperature conditions of relative abundance we found that the degree is not increased but have been presented with increasing annealing temperature trend of first increased and then decreased, because a portion of alloying elements to produce at a high temperature so as to reduce burning and volatile main phase of the alloy reduces the comprehensive
performance。 On the whole, 900 ℃ when the alloy electrode best performance, the
maximum discharge capacity of 394。44mA / g, the capacity retention rate 82。36wt%, activation performance and cycle stability have a larger increase。
Key words: Hydrogen storage alloy La0。85Mg0。15Ni2。75Co1。05 Annealing temperature Electrochemical Performance
目录
第一章 绪论 1
1。1 储氢合金的发展历史 1
1。2 储氢合金吸放氢原理 2
1。3 储氢合金的研究现状 4
1。3。1 AB5 型稀土系合金 4
1。3。2 AB 型储氢合金 5
1。3。3 AB2 型 Laves 相储氢合金