; 0 < c 6 1; 0 < a < 1
cDk2
ð29Þ
where a is a constant in the deterministic case。 The discrete-time FPSO algorithm converges over a finite-time interval if
T
there exist a positive-definite matrix Q ¼ Q
> 0 and a parameter b such that
Fig。 8。 The convergence curves of the states in the discrete-time FPSO algorithm (28) (x ¼ 0:8; a ¼ 2:2; b ¼ 0:5; c ¼ 0:5; Dk ¼ 0:5; xi ð0Þ ¼ 5, and
vi ð0Þ ¼ —9)。
A ¼ 1 — cDk2 a
A ¼ Dk — cDk2 ð1 — xÞ
A21 ¼ —cDka
A22 ¼ 1 — cDkð1 — xÞ
Proof。 Since the discrete-time model of the FPSO algorithm (28) can be derived in terms of (26), we write the system (26) in the Matrix–Vector form:
Set gðkÞ ¼ y1 ðkÞ2 ð Þ
and f ðgðkÞÞ ¼ —bDk sigð/l ðkÞÞa
—bDksigð/l ðkÞÞ
。 The system (31) can be rewritten as
gðk þ DkÞ¼ AgðkÞþ f ðgðkÞÞ ð32Þ
If the nonlinear item f ðgðkÞÞ ¼ 0, the stability region of the system (32) is the part of the space ðx; aÞ, where the roots of the characteristic equation
k2 þ ðacDk2 þ cDkð1 — xÞ— 2Þk þ ð1 — cDkð1 — xÞÞ ¼ 0
are in the unit circle。 Applying the Routh-Hurwitz criterion, this region turns to be (29)。 If the nonlinear item f ðgðkÞÞ – 0, we have
f T ðgðkÞÞf ðgðkÞÞ ¼ ðb2 Dk4 þ b2Dk2Þj/ j2a
Consider the case of j/a j > 1。 We obtain
2 T T
f T ðgðkÞÞf ðgðkÞÞ 6 ðb2Dk4 þ b2 Dk2 Þj/ j
¼ dgðkÞ H HgðkÞ ð33Þ
where
2 4 2 2
d ¼ b Dk þ b Dk
H 。 a 1 — x 。
¼ 0 0
Consider another case of 0 < j/l j 6 1。 There exits a positive constant e > 0 such that
f T ðgðkÞÞf ðgðkÞÞ 6 dej/l j
ð34Þ
Therefore, - ¼ maxfd; deg。 Choose a Lyapunov function candidate as
VðgðkÞÞ ¼ gðkÞT PgðkÞ ð35Þ
where P ¼ PT > 0 and P 2 R2×2 。
T T
MV ðgðkÞÞ ¼ V ðgðk þ DkÞÞ — VðgðkÞÞ ¼ ðAgðkÞþ f ðgðkÞÞÞ PðAgðkÞþ f ðgðkÞÞÞ — gðkÞ PgðkÞ
T T