bð1 — xÞ
aþ1
cð1 — xÞ 2
að1 — xÞ 2
VðtÞ¼
a þ 1 j/mj þ
2 /m þ
2 y2 ð20Þ
Obviously, VðtÞ P 0。 Along the closed-loop system’s trajectory, we obtain
dVðtÞ
a _ _
2 a 2
dt ¼ bð1 — xÞsigð/m Þ /m þ cð1 — xÞ/m/m þ að1 — xÞy2 y_ 2 ¼ —ð1 — xÞ ðc/m þ bsigð/mÞ Þ
ð21Þ
Claim 1。 If /m ¼ 0, then y1ðtÞ ¼ 0 and y2ðtÞ ¼ 0。
。 y t 。
。 1—x 。
This claim can be proved as follows。 If /m ¼ 0, which implies that ð1 — xÞy2ðtÞþ ay1ðtÞ ¼ 0, then
1ð Þ
y2ðtÞ
h — a
1
where h 2 R。 If h ¼ 0, then y1ðtÞ ¼ 0 and y2ðtÞ ¼ 0。 If h – 0, both y1ðtÞ and y2ðtÞ are not zero。 In terms of (19), we can obtain y_2ðtÞ ¼ 0, which means that y2ðtÞ ¼ y2ðt þ dtÞ ¼ h over the time interval ½t; t þ dt] for small dt。 Moreover, because of y_1ðtÞ ¼ y2ðtÞ ¼ h; y1ðtÞ ¼ —h 1—x – y1ðt þ dtÞ, which implies that /mðt þ dtÞ – 0。 Then, we have Vðt þ dtÞ > VðtÞ, which is contradiction according to (21) since V ðtÞ is a nonincreasing function for any time t。 Hence, we have h ¼ 0, i。e。 y1ðtÞ ¼ 0 and y2ðtÞ ¼ 0。 The proof of this claim is completed。
By Claim 1, the states of the system (19) will asymptotically converge to the origin。
Given initial state y1 ð0Þ and y2ð0Þ such that /m ð0Þ – 0, if there exists a constant k > 0 such that
2 ; The inequality follows from the fact that /m ¼ sigð/m Þ。
。 y1ðtÞ 。
Since /m ¼ ð1 — xÞy2 ðtÞþ ay1ðtÞ ¼ ð a 1 — x ÞfðtÞ, where fðtÞ ¼
y2ðtÞ
presents the system state, we have
2 !
/2 T a að1 — xÞ
m ¼ fðtÞ
að1
— xÞ ð1 —
xÞ2
fðtÞ ð23Þ
。 2 。 2
Let M ¼ a
að1 — xÞ