Fig。 8。    A typical measurement result of the cutting force pattern with continuing change of the tool inclination   angle。

Fig。 9。    Cutting force patterns with inclination angles for different tool   inserts。

4。 Conclusions

With the prospective open-architecture controllers, active control of the on-line machining pro- cess performance will become a very important feature of advanced CNC machine functions, allowing both the tool path and the process performance to be programmed and controlled in real-time CNC machining operations。 Therefore, the object of this work is to develop a new tooling mechanism with on-line adjustable tool angles to take full advantage of new-generation CNC machines which will be equipped with open-architecture control systems。 In effect, an on- line controllable tooling mechanism will be the ‘real sense’ application of open-architecture CNC control systems。

Tool inclination angle is a major tool geometry parameter in machining and has a significant effect on a number of process performance parameters, such as cutting forces, surface quality, chip flow and formation, process dynamic stability, tool wear/tool life, etc。 Thus it is important that the tool inclination angle could be adjusted and controlled in real-time to achieve the optimal machining performance in unattended CNC machining  processes。

A motor-controlled toolholder that can be used in CNC machines has been developed with the function of automatic setting of the tool inclination angle and automatic compensation of the resulting tooltip deviations。 The new CNC tooling mechanism is a novel design using three curved slots that work simultaneously to compensate continuously and accurately the tooltip deviations resulted from the setting of the tool inclination angle。 Since the tooltip always stays at one point in space, i。e。 its working point, during the whole adjustment process of the required tool inclination angle, the new tooling mechanism could be used in real-time CNC machining operations to achi- eve the on-line control of optimal process   performance。

References

[1] W。 Kluft, W。C。 Konig, A。 van Luttervelt, K。 Nakayama, A。J。 Pekelharing, Present knowledge of chip control, Annals of the CIRP 28 (2) (1979)   441–454。

[2]  M。C。 Shaw, Metal Cutting Principles, Oxford University Press, New York,   1984。

[3] S。 Kaldor, P。K。 Venuvinod, Macro-level optimization of cutting tool geometry, ASME Journal of Manufacturing Science and Engineering 119 (1997)  1–9。

[4] W。K。 Luk, The direction of chip flow in oblique cutting, International Journal of Production Research 10 (1) (1972) 67–76。

[5] Society of Manufacturing Engineers。 Fundamentals of Tool Design, Second ed。, SME, Dearborn, MI, 1984。

[6] H。Y。 Young, P。 Mathew, P。L。B。 Oxley, Allowing for nose radius effects in predicting the chip flow direction and cutting forces in bar turning, IMechE Proceedings of the Institution of Mechanical Engineers 201 (C3) (1987) 213–226。论文网

[7] C。Y。 Jiang, Y。Z。 Zhang, Z。J。 Chi, Experimental research of the chip flow direction and its application to the chip control, Annals of CIRP 33 (1) (1984)   81–84。

[8] F。 Kiyasawa, Observation on the chip entanglement, in Proceedings of the 5th International Manufacturing Confer- ence, Guangzhou, China, Vol。 A, 1991, pp。   49–52。

[9] V。C。 Venkatesh , Computerized machinability data, in: Proceedings of the 1986 Automach Conference, Sydney, Australia, 1, SME, Dearbon, Vol。 1。 1986, pp。   59–73。

[10] X。D。 Fang, I。S。 Jawahir, Predicting total machining performance in finish turning using integrated fuzzy-set models of the machinability parameters, International Journal of Production Research 32 (4) (1994) 833–849。

上一篇:抗震性能的无粘结后张法预应力节断桥柱英文文献和中文翻译
下一篇:数控机床制造过程的碳排放建模英文文献和中文翻译

切削加工新概念英文文献和中文翻译

采用遗传算法优化加工夹...

高速铣削口袋的波纹加工英文文献和中文翻译

数控加工技术英文文献和中文翻译

模具以及模具的现代加工英文文献和中文翻译

主轴自振式钻头的加工预...

数控车床附件的研究英文文献和中文翻译

麦秸秆还田和沼液灌溉对...

网络语言“XX体”研究

LiMn1-xFexPO4正极材料合成及充放电性能研究

安康汉江网讯

互联网教育”变革路径研究进展【7972字】

张洁小说《无字》中的女性意识

新課改下小學语文洧效阅...

ASP.net+sqlserver企业设备管理系统设计与开发

老年2型糖尿病患者运动疗...

我国风险投资的发展现状问题及对策分析