Two fully formulated commercial oils 15W40 and 5W30 were used for lubrication. Both oils were characterized using Fourier Transformed Infrared (FTIR) spectrometry, Differential Scanning Calorimetry (DSC), Thermogravimetry analysis (TGA) and Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). Degradation tem-
perature was determined through DSC using heating rate 10 °C/min in the temperature interval from 50 to 500 °C. Oxidation behaviour was studied using isothermal DSC at 180 °C in O2 atmosphere under.
20 bar pressure. Thermal conductivity, heat capacity and viscosity were also determined. The results are given in Table 2.The oils have very similar base stock formulation as could be inferred from the almost indistinguishable FTIR spectra of these oils. Their thermal properties were very similar as well. As it could be expected, viscosity for 5W30 was lower, than for 15W40. Also, 15W40 showed slightly better degradation behaviour and the oxidation resistance that could be associated with higher concentrations of Zn, S and P.
关键词:缸套活塞环边界摩擦造型表面涂层摘要:在汽车行业中,相对滑动的关键部件的材料及处理方法评价是设备研发的重要环节。模拟发动机的磨损过程组件被认为是实验测试的替代方案,由于实机测试昂贵且耗时,但需要一个可靠的实验数据进行模型微调。因此,气缸套的摩擦和磨损对活塞环的实验研究在模拟实验室的测试是很重要的。参数是在这些测试中控制括油类型,润滑不足,表面光洁度和表面涂层。将获得的实验数据馈入特定的模拟模型(AVLExcite-PowerUnit)。比较实验和模拟结果产生的误差低于5%。
1.引言
往复式燃烧性能的重要进步发动机与摩擦学主题(包括改进)相关联在润滑中,优化各个触头的表面几何形状,应用先进的材料和涂料等发动机部件,活塞组,即活塞,环和气缸缸套,是乘用车发动机中特别关注的,高达50%总能量由于这些部件的摩擦而损失。活塞衬套的摩擦和磨损特性的优化接触总是与许多其他要求的折衷:从活塞到发动机结构的热传递,对油的密封流入和从燃烧室和其他气体泄漏[1-3]。在文献中,活塞的摩擦学性能组通常通过表面形貌的优化来体现,比如磨削表面[4-8],润滑剂组成和润滑制度[9,10]以及表面改性[11-14]。
最严重的区域突出的集中于上止点(TDC),因为各种因素的结合:交替加速从减速到完全停止,最高温度和润滑不足混合或边界制度[15]。然而,只有少数研究针对穿戴缓解[11,16],而主要依赖这些条件仍然很少了解。在广泛的工作[11]全配方替代发动机油与不同的基础油以追求改进它们的润滑能力水动力和混合制度,虽然边界制度是典型的TDC尚未得到充分解决。另一方面,各种类型的表面改性如硬铬镀层[17]热等离子喷涂[18,19],纳米HVOF[20]和氮化[21]已经被提出以增强活塞环的耐磨性气缸衬套。这些方法中有物理气相沉积(PVD)良好粘附的表面涂层具有很大的磨损可能性TDC[17,22]。低厚度涂层约8μm在制造工艺的最后步骤中沉积保持活塞环几何形状不受影响,同时提供可能性用于定制表面机械和化学性能。