Abstract: In traditional engine setups Belt Drive Systems (BDS) are in charge of power transmission from the crankshaft to the accessories. They are complex and critical dynamic mechanisms, involving contact mechanics and vibration phenomena. The hybridization of vehicles has increased the severity of the operating conditions of these systems that have become even more critical. The traditional alternator was substituted by a Belt-Starter Generator (BSG), an electric machine that can power the BDS in particular operating conditions to improve the Internal Combustion Engine (ICE) performance or to allow regenerative braking. The aim of the present work is to describe the design and the main characteristic of a test rig conceived to investigate in laboratory environment on the behaviour of belt drive systems in dynamic conditions. Two permanent magnet electric motors are used to replicate the dynamic behavior of crankshaft and BSG in a realistic, though controlled and repaetable, manner.68696

© 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

Keywords: Automotive Control, Hybrid Vehicles, Belt Drive Systems, Dynamic Modeling, Front-End Accessory Drives, Model Based Control

1. INTRODUCTION

 

Belt Drive Systems (BDS) or Front-End Accessory Drives (FEAD) constitute the traditional power transmission mechanism to power the main internal combustion ancil- liaries such as the alternator, water pump and air con- ditioning pump. The torque generated by the Internal Combustion Engine (ICE) is transmitted by means of a serpentine belt that wraps around the driving and driven accessory pulleys of the drive systems.

BDS represent traditionally a complex and critical vehicle subsystem because of the performance specifications that need to be fulfilled. It usually in the severe ambient condi- tions of the engine compartment and is subject to highly dynamic excitations coming from the crankshaft harmon- ics. These harmonic excitation ,together with the inertia of the accessories (mainly the alternator), leads to vibrations of the belt and high tension fluctuations that can cause slippage and noise. To reduce these excitations a number of solutions have been developed including decoupling, filtering and overruning pulleys. The analysis of these phenomena led to the development of refined models of the belt pulley contact mechanics together with the definition of serpentine multi-pulley models to predict the dynamic response of serpentine belt-drive systems. A literature review shows that several research activities were carried out addressing separately the belt pulley mechanisms, see Bechtel et al. (2000), Rubin (2000), Hansson (1990), and the dynamic behavior of the transmission system, see Ul- soy et al. (1985), Hwang et al. (1994), Leamy and Perkins (1998). Only few attempts were done in the last 10  years

 

to bridge the gap between research on contact mechanics and dynamic analysis by Leamy and Wasfy (2002), Leamy (2003), Kong and Parker (2003). Tonoli et al. (2006) an- alyzed the effect of shear deflection of the belt on the rotational dynamic behavior of the transmission.

Additionally, the advent of hybrid technologies has seen the rise of a class of micro-hybrids that changes the oper- ating modes of the traditional belt drive systems. In this paradigm, the alternator is substituted with a Belt Starter Generator (BSG), an electrical machine able to work both as motor and as generator, causing a tight/slack span alternation when activated. The use of a BSG requires the introduction of a tensioning device able to keep the belt tension inside a safe range while preventing slippage facing the severe working conditions, see Cariccia et al. (2013). Several solutions have been proposed to satisfy this requirement, such as doble tensioners, decoupling tension- ers and active electromechanical or hydraulica tensioners. With the addition of active devices, such as the BSG and complex tensioners, the intelligent BDS (iBDS) becomes a complex and challenging mechatronic system.

上一篇:轴承的选用英文文献和中文翻译
下一篇:压力阀迷宫通道流量特性英文文献和中文翻译

悬架系统的多体动力学模...

监测和诊断多通道非线性...

多件式模具设计英文文献和中文翻译

船舶设计多维问题的元建...

SWATH的参数化设计和多目标...

成形预测级进模冲压件多...

供电多通道RS-232驱动器接...

网络语言“XX体”研究

麦秸秆还田和沼液灌溉对...

张洁小说《无字》中的女性意识

互联网教育”变革路径研究进展【7972字】

安康汉江网讯

新課改下小學语文洧效阅...

老年2型糖尿病患者运动疗...

ASP.net+sqlserver企业设备管理系统设计与开发

LiMn1-xFexPO4正极材料合成及充放电性能研究

我国风险投资的发展现状问题及对策分析