ð20Þ

M4 min = pffi2ffiffi.xC

− pffi2ffiffi.yC

ðmR2 + 4J1Þ + 4ẏCψ ̇ J1. sinðψ + π 4̸ Þ ð̸ 4RÞ

ðmR2 + 4J1Þ − 4ẋCψ ̇ J2. cosðψ + π 4̸ Þ ð̸ 4RÞ

ð21Þ

1

..

+ ψ .JCR2 + 4J1ðl2 + d2Þ. ð̸ 4Rðl + dÞÞ .

By applying a similar criterion (the minimum of the sum of the squares) to the voltages defined by Eqs. (14)–(16), we  obtain

U1 min = pffi2ffiffi.xC

p

ðmR2 + 4J

..

1Þ + 4ẏCψ ̇ J1 + 4ẋccv. sinðψ + π 4̸ Þ ð̸ 4RcuÞ

ffi2ffiffi.yC ðmR2 + 4J1Þ − 4ẋCψ ̇ J1 + 4ẏccv. cosðψ + π 4̸ Þ ð̸ 4RcuÞ

ψ ðJCR2 + 4J1ðl + dÞ2Þ ð̸ 4Rðl + dÞcuÞ − ψ ̇ðl + dÞcv ð̸ RcuÞ ,

U2 min = pffi2ffiffiðxC ðm + 4J1Þ + 4ẏCψ ̇ J1 + 4ẋccvÞ cosðψ + π 4̸ Þ ð̸ 4RcuÞ

+    2  yC ðm + 4J2Þ − 4ẋCψ ̇ J2 + 4ẏccv    sinðψ + π 4̸ Þ ð̸ 4RcuÞ

ð22Þ

ð23Þ

1 1

..

+ ψ ðJCR2 + 4J1ðl + dÞ2Þ ð̸ 4Rðl + dÞcuÞ + ψ ̇ðl + dÞcv ð̸ RcuÞ ,

Fig. 3   Mobile robot based

on the 4 WD Mecanum wheel mobile kit from NEXUSrobot and controlled by a plugin based software “RobotController”

..

ð    ðm + 4J1Þ + 4ẏCψ ̇ J1 + 4ẋccvÞ cosðψ + π 4̸ Þ ð̸ 4RcuÞ

+ pffi2ffiffi.yC

..

ðm + 4J2

Þ − 4ẋCψ ̇ J2

+ 4ẏccv. sinðψ + π 4̸  Þ ð̸ 4RcuÞ

ð24Þ

− ψ ðJCR2 + 4J1ðl + dÞ2Þ ð̸ 4Rðl + dÞcuÞ − ψ ̇ðl + dÞcv ð̸ RcuÞ ,

U4 min = pffi2ffiffi.xC

ðmR2 + 4J

1Þ + 4ẏCψ ̇ J1 + 4ẋccv. sinðψ + π 4̸ Þ ð̸ 4RcuÞ

− pffi2ffiffi.yC

ðmR2 + 4J1Þ − 4ẋCψ ̇ J1 + 4ẏccv.

cosðψ + π 4̸  Þ ð̸  4RcuÞ

ð25Þ

+ ψ ðJCR2 + 4J1ðl + dÞ2Þ ð̸ 4Rðl + dÞcuÞ + ψ ̇ðl + dÞcv ð̸ RcuÞ .

Constructing the optimal modes on the basis of integral criteria is reduced, as a rule, to numerical optimization procedures.

5 Conclusion

The kinematic and dynamic equations are derived for a four-wheeled robot with Mecanum wheels, subject to non-holonomic constraints (rolling without slipping). The optimal torques to be applied to the wheels and the voltages to be applied to the motors in order to provide a prescribed trajectory for the robot’s center of mass are found. To evaluate the theoretical results, a prototype of a mobile platform with four Mecanum wheels that implements the principles presented in the paper was used (see Fig. 3). The experimental data agree with the theoretical  predictions.

Acknowledgments This study was supported by the Development Bank of Thuringia and the Thuringian Ministry of Economic Affairs with funds of the European Social Fund (ESF) under grant 2011 FGR 0127.

References

Campion, G., Bastin, G., & D’Andrea-Novel, B. (1996). Structural properties and classification of kinematic and dynamic models of wheeled mobile robots. IEEE Transactions on Robotics and Automation, 12(1), 47–62.

上一篇:固液搅拌罐的CFD模拟英文文献和中文翻译
下一篇:高填充聚苯硫醚变温模具控制英文文献和中文翻译

数控机床制造过程的碳排...

新的数控车床加工机制英文文献和中文翻译

抗震性能的无粘结后张法...

锈蚀钢筋的力学性能英文文献和中文翻译

未加筋的低屈服点钢板剪...

汽车内燃机连杆载荷和应...

审计的优化管理英文文献和中文翻译

老年2型糖尿病患者运动疗...

互联网教育”变革路径研究进展【7972字】

安康汉江网讯

LiMn1-xFexPO4正极材料合成及充放电性能研究

我国风险投资的发展现状问题及对策分析

ASP.net+sqlserver企业设备管理系统设计与开发

张洁小说《无字》中的女性意识

网络语言“XX体”研究

麦秸秆还田和沼液灌溉对...

新課改下小學语文洧效阅...