The engine crank shaft and the clutch dynamics are given by

Jeω˙e = Te(ωe, α) − Td (1)

Jd ω˙d  = Td − Tc1 − Tc2 (2)

where, Je and Jd are the moment of inertia of the engine and the mass flywheel, respectively, Te the engine torque calculated from a steady-state map with respect to the engine speed ωe, and the throttle angle α, Tc1 the clutch 1 torque connected with the solid shaft, and Tc2 the clutch 2 torque connected with the hollow shaft。 Td represents a fly wheel compliance given by Td = kd (θe − θd )+ bd (ωe − ωd ) where kd and bd denote stiffness and viscous coefficients。 By assuming a Coulomb friction model, the clutch torque is represented as

Tck = μckRckFnksign(ωd − ωck), f or k = 1, 2 (3) where,  μc  is  the  friction  coefficient  of  the  clutch surface,

Rc the effective radius of the clutch disk, and Fn the clutch normal force。 The dynamics of the clutch is represented   as

This paper is the first manuscript of the invited session in 2011  American

Control Conference, San  Francisco。

The authors are with the Department of Mechanical Engineering,     KAIST,     Daejeon,     Korea    (jsk@kaist。ac。kr;

Fig。 1。    Vehicle driveline dynamics with a   DCT

are the equivalent moment of inertia    of

Fig。 2。    Schematic of the control concept for a    DCT

the solid and hollow shafts, which can be calculated   as

。 it2if 2 。2

Froll  = Kr Mvg cos θr, Faero =

is the vehicle mass, g the acceleration of  gravity,

。 it1if 1 。2

Jr

θr  road grade, Kr  the rolling stiffness coefficient, ρ  mass

density of air, Cd  coefficient of aerodynamic resistance,   AF

c2 = Jc2 + Jt2 +   i  i

(Jc1 + Jt1)。

t2  f 2

Here, it and i f denote the transmission gear ratio and the final differential ratio, and Jc and Jt stand for moment of  inertia of the clutch and transmission, respectively。 The drive shaft torque Ts  is modeled  as

the frontal area of vehicle, vx  the vehicle speed, and rw  is

the effective wheel radius。 This equation can be explained by force balance between the tractive force and the loads such as aerodynamic and rolling resistance。 Combining   equation

(7) and (8) yields

2   is  obtained by

where, the variable ks denotes the stiffness, bs the damping coefficient of the output shaft, θw the wheel angle, and ωw the wheel speed, respectively。 ωt  denotes the    transmission

adding the wheel inertias to the equivalent inertia of the ve- hicle mass。 The external load torque Tload in above equation is given by

output speed that is set to the corresponding clutch speed depending on the gear ratio (i。e。 ωt = ωc1 for odd number gearbox, and ωt = ωc2  for even gearbox)。

It is reasonable to assume that the tire is considered as

a rolling element without slip。 In addition, the distribution of traction force on the axles is also neglected。 These assumptions make the relationship between the wheel speed ωw and vehicle speed vv simple as vv = rwωw。 Subsequently, the wheel dynamics is

上一篇:模拟到数字的转换英文文献和中文翻译
下一篇:飞行数据记录器英文文献和中文翻译

数控机床制造过程的碳排...

新的数控车床加工机制英文文献和中文翻译

抗震性能的无粘结后张法...

锈蚀钢筋的力学性能英文文献和中文翻译

未加筋的低屈服点钢板剪...

台湾绿色B建筑节水措施英文文献和中文翻译

汽车内燃机连杆载荷和应...

互联网教育”变革路径研究进展【7972字】

麦秸秆还田和沼液灌溉对...

网络语言“XX体”研究

新課改下小學语文洧效阅...

老年2型糖尿病患者运动疗...

我国风险投资的发展现状问题及对策分析

张洁小说《无字》中的女性意识

ASP.net+sqlserver企业设备管理系统设计与开发

LiMn1-xFexPO4正极材料合成及充放电性能研究

安康汉江网讯