3。2 Process uniformity
In order to explore the uniformity within the effective panel size of 150 mm 9 150 mm, two embossed channels from the center of the same pattern (i。e。 75 lm channel-width/ 300 lm pitch in group A) on each of the six units were selected and characterized。 Figure 8 demonstrates varia- tions of the embossed depth of the selected patterns at 70°C, 14 bars and 1。6 mm/s it was found that the lowest embossed depths were observed in the central units (with the legend of LC and UC in Fig。 3)。 This may be due to the uneven pressure applied on the mold-substrate pair; this uneven pressure was possibly caused by following reasons:
(1) diameter tolerance or straightness of rollers; (2) air bubbles trapped during embossing。 However, variations in
Fig。 11 Effect of temperature versus depth of embossed channels (75 lm channel-width and 300 lm pitch) in all six units。 Process pressure and feeding speed were 10 bars and 1。6 mm/s, respectively
embossed depths between the left and right units (LL vs。 LR; UL vs。 UR) were within 1。0 lm。 This might be due to the variations of temperature distribution as shown in Fig。 2, or uneven pressure distribution along the roller。
3。3 Effect of process parameters
Effects of main process parameters were investigated。 Figure 9 illustrates the effect of applied pressure versus embossed depth of channels in group A (75 lm channel- width/300 lm pitch) at 1。6 mm/s and 75°C。 It was observed that embossed depth significantly increased as the applied pressure increased from 8 bars to the pressure limitation of 14 bars。
Feeding speed in roller embossing determined the con- tact time between mold and substrate; the contact time was an influential factor in two aspects: (1) it determined the heating period, thus dominated the temperature of substrate in roller embossing; (2) it also determined compressing time for pattern formation。 Figure 10 demonstrates the impact of feeding speed against embossing depth at 65°C and 10 bars。 It was seen that the embossed depth was significantly increased as the feeding speed decreased from文献综述
9。8 to 0。67 mm/s, which was close to the minimum feeding speed that the embosser could provide。
Figure 11 illustrates the effect of r本文提出了一种针对大面积承印物用层压陶瓷绿色生料带的微辊压花工艺(a micro roller embossing process for patterning large-area substrates of laminated green ceramic tapes)。本文研究方向为开发一种与丝网印刷装置(screen printing apparatus)兼容,用于热辊压机(thermal roller laminator)的大面积微观构造技术来制作绿色陶瓷承印物。本研究开发出了一种基于照相平版印刷法(photolithographic patterning)的薄膜镀镍模具(thin film nickel mold),其能够在75μm厚的镍膜上电镀镍。该模具有效面板尺寸为150毫米150毫米,与其电镀图案凸出部分共计高约38μm。使用辊筒压花工艺,层压绿色生料带的整个面板区能够成功演示微型图案的成型。用于电感器、加热器以及相互联络用的50μm线宽的微型图案也被雕印在了绿色陶瓷承印物上。通过调整工艺参数,包括辊筒温度,施加的压力和进给速度,现已论证微辊压花是一种用于大面积绿色陶瓷承印物成图很有前景的方法。
介绍
低温共烧陶瓷(LTCC)材料已被广泛用于多功能承印物,并逐渐为各种如电力电子的微流体元件(microfluidic devices)和三维模块等新兴应用所追捧(Gongora Rubio等人,2001;Smetana以及Unger,2008)。为了满足各种应用需求,其对于不同特殊的加工未电离绿色陶瓷生料带工艺来说越来越重要(Imanaka,2004)。在单独的绿色陶瓷生料带上加工微通孔和腔(fabricating micro vias and cavities)的常规方法是机械冲孔(mechanical punching)(Wang等,2006)或激光钻孔(Hagen 和 Rebenklau,2006)。论文网然而,这些方法有局限性,例如,所产生的图案的最小深度被绿色陶瓷生料带的厚度所限制;以及最小特征(minimum feature)的横向尺寸(lateral dimensional)为穿孔针或激光束(punching needles or laser beams)的尺寸所限制。非圆微图案的形成,如微型通道或楔形图案由于机械打孔和激光钻孔而更具挑战性。绿色陶瓷生料带上产生微型图案的另一种方法是使用微压印工艺(Cameron,2006),已被越来越多地被用于聚合物的微结构制备(Charest等人,2004;worgull等人,2005;Datta和goettert,2007)。微压花用于图案化绿色陶瓷生料带将提高LTCC作为衬底材料的优点。几个研究小组已经证明使用同步压花在绿色陶瓷生料带上成图的可行性,即将整体面板与刚性模具(rigid mold)同时雕印;微型柱体和楔体可在绿色承印物上成图(Andrijasevic等,2007; Rabe等,2007)。然而,由以陶瓷为基础的粉末以及聚合物添加剂组成的绿色陶瓷生料带柔性高,强度低。这些特性会增加脱模困难;在脱模过程中,有浮雕的绿色承印物可能会被磨损或严重弯曲。本研究提议,借助辊压花在大面积绿色陶瓷承印物上产生微型图案。辊压花是一种制造聚合物为基础的微系统的新兴技术(Tan等,1998;Chang等,2006)。与上述同时压花相比,辊压花的优点,特别是用于图案成形的绿色陶瓷承印物,有:(1)局部压花区降低了脱模难度;(2)与加热器局部接触,所以只有一小部份的承印物被加热;(3)减少承印物尺寸限制;(4)更低的压花力(embossing force)。薄膜镀镍模具藉由在75μm厚的镍膜上镍电镀凸出图案得到发展。该模具有一个有效面积为150毫米150毫米×面板,这与标准的丝网印刷面板尺寸兼容。形成微图案是用辊压花复合绿色陶瓷带证明成功(从贺利氏HL2000)在整个面板区。使用辊筒压花工艺,层压绿色生料带(HL2000 from Heraeus)的整个面板区能够成功演示微型图案的成型。诸如电感器、加热器的微型图案也被雕印在了绿色陶瓷承印物上。结果表明,微辊压花是一种用于大面积绿色陶瓷承印物成图很有前景的方法。