where qiðtÞ are the modes of vibrations of the flexible slider– crank mechanism。 To derive the model for the flexible mechanism   the   Euler–Lagrange   equations   are   used。  Let

L ¼ T — U, where T and U are the kinetic and potential energies of the system, respectively。 The equations of motion can be obtained using the following  equation:

2。Modeling of the mechanism

Equation of motion of a flexible slider–crank mechanism  is

where  Fi  are  the  nonconservative  forces,  τi   is  the  applied

derived using the Euler–Lagrange approach [13–17]。 The mechanism is assumed to move in the horizontal plane and

torque on the system, and !ξ

is the deflection vector。

the longitudinal defections are negligible。 Schematic of the slider–crank mechanism with a flexible connecting rod is depicted in Fig。 1。 The mechanism parameters are defined    as

½ξ1; ξ2; :::; ξn þ 1]¼ ½θ; q1ðtÞ; q2ðtÞ; :::; qnðtÞ] ð6Þ

The kinetic energy of the system is then   calculated:

follows: r is the crank length; L is the connecting rod length; θ

is the crank angle; ψis the connecting rod angle with respect to

the ground; x and w are the x- and y-coordinates, respectively,

where ms  is the mass of the slider, !X

B  is the velocity of  the

of any point on the connecting rod in the !e `1 — !e 2  coordinate

system。

The location of any point on the flexible connecting rod (Fig。 1) is given  by

connecting rod end point, Ic is the moment of inertia of the crank, and ρ; A are the density and cross section of the connecting rod, respectively。

!R  ¼ !r  þ!x  þ!w

equal to

!R  ¼ ðr  cos  θ þw  cos  ψ þx  cos  ψ Þ !i

þðr  sin  θ þw  sin  ψ  — x  sin  ψ Þ!j

The y-component of the displacement of the end point of the

connecting rod at x ¼ l, which can be obtained by taking    the

The  dependent   coordinate  ψ   is  then  omitted   using  the

scalar product of the displacement vector !Rzero。 Therefore

holonomic constraint of the slider–crank mechanism (Eq。  (3))。

The potential energy of the mechanism is given by

Fig。 1。  Slider–crank mechanism。

For a single mode  model

Table 1

Mechanism’s parameters。

Variable Definition Value

R Crank length 10 cm

L Connecting rod length 30 cm

Ms Slider mass 0。5 kg

Mc Crank mass 2(ρ)(π)hr

EI Flexibility 0。2

ρ Material density 7850

H Radius of the rod

上一篇:自动刷镀机英文文献和中文翻译
下一篇:有限元分析系统的发展现状英文文献和中文翻译

数控机床制造过程的碳排...

新的数控车床加工机制英文文献和中文翻译

抗震性能的无粘结后张法...

锈蚀钢筋的力学性能英文文献和中文翻译

未加筋的低屈服点钢板剪...

台湾绿色B建筑节水措施英文文献和中文翻译

汽车内燃机连杆载荷和应...

互联网教育”变革路径研究进展【7972字】

LiMn1-xFexPO4正极材料合成及充放电性能研究

老年2型糖尿病患者运动疗...

ASP.net+sqlserver企业设备管理系统设计与开发

网络语言“XX体”研究

我国风险投资的发展现状问题及对策分析

新課改下小學语文洧效阅...

安康汉江网讯

张洁小说《无字》中的女性意识

麦秸秆还田和沼液灌溉对...