The drag force in each stage can be differently derived as below。

In the 1st stage, most of drag forces are caused by friction between anchor and soil and the equation (1) can be used as a drag force equation。

F1, F2=N1·  (W+C·Wadd) (3)文献综述

N1 : Bearing capacity factor of stage 1

W : Weight of anchor

Wadd : Weight of sand accumulated over the fluke (Wadd = (Af·Lf·ρg·sinθ1) / 2)

C : calibrating constant, including soil heave effect

γ  : Specific weight of wet soil (γ = ρg)

On the 2nd stage, most of drag forces are caused by soil resistance on the failure wedge surface and the equation (2) can be used as a drag force equation。

F3=F2+N2·Af·ρg·d (4)

N2 : Bearing capacity factor of stage 2

A : Fluke area

d : Depth of fluke

By applying the test results to Eqs。 (3) and (4), bearing capacity factors of each stage are derived as in Tables 7~8。

Table 7 Bearing capacity factor (sand)。

TYPE W (kgf) N1 C N2

HALL 6000 0。79-0。82

1。2 9。75

9350 0。71-0。75 10。60

12300 0。90-0。96 8。18

AC-14 4500 0。70

1。6 5。91

6975 0。70 5。23

9225 0。71 6。55

POOL-N 6975 1。01-1。05

1。8 5。00

9225 0。90-0。93 5。21

Table 8 Bearing capacity factor (mud)。

CONCLUSIONS

This study is carried out to verify the drag embedding motion and the resultant holding force of three types of anchor models (HALL, AC-14, POOL-N) on both hard(mud) and soft(sand) seafloor, and to derive governing equations, regarding the relations of the anchor geometry and the holding force。

Considering the test results, the anchor  embedding motion is persified by three stages with different kinds of motion and force applied and, finally, the governing drag force equation in each stage is derived with respect to the anchor geometry and the embedded depth on both hard and soft seafloor, using the bearing capacity factor。

The results can be used to verify the actual holding capacity of each type of DEA, as reference, and be used as fundamental data for the development of more efficient and higher performance DEA in the future。

ACKNOWLEDGEMENT

This work was supported by the Human Resources Development of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy。 (No。 20114030200050 )文献综述

摘要由于的船舶及其他浮动海上结构变得更大,同时海洋环境变得恶劣,要求嵌入型锚抓力性能更稳定和更高。本文介绍了拖动嵌入运动的实验研究和三类拖埋置式锚的合力模型。

上一篇:除尘式道路清洁机英文文献和中文翻译
下一篇:新型锚具的抓力性能英文文献和中文翻译

数字通信技术在塑料挤出...

CAE技术在车辆安全性应用英文文献和中文翻译

十九世纪锚机的发展英文文献和中文翻译

新型锚具的抓力性能英文文献和中文翻译

Moldflow软件在复杂的塑料外...

液压在移动嵌入式设备中...

在线机器测量系统英文文献和中文翻译

老年2型糖尿病患者运动疗...

张洁小说《无字》中的女性意识

ASP.net+sqlserver企业设备管理系统设计与开发

LiMn1-xFexPO4正极材料合成及充放电性能研究

我国风险投资的发展现状问题及对策分析

新課改下小學语文洧效阅...

网络语言“XX体”研究

麦秸秆还田和沼液灌溉对...

互联网教育”变革路径研究进展【7972字】

安康汉江网讯