where    ∈  × is the mooring line configuration matrixandNisthenumber of mooringlines。Thenitcanbedefined as

experiment results are to be shown。 For this, the experimental set-up is illustrated in Fig。 3, and the schematicdiagramforexperimentalisshownin Fig。 4。 As illustrated in the figures, the control

system (NICompactRio)isplacedonthevessel andworksbyitself。

However,thevesselmotionsare captured by the CCD camera which isattachedonthecelling。 Theimagedataobtainedbycameraistransferred to host onshore computer, and vessel motions are calculatedbyusingvectorcodecorrelation technique in realtime6~7)。Thenthecalculated position and heading angle are sent to a real time controlsystemCompactRioplacedonthe vessel。

Fig。 3Photooftheexperimentsystem setup Also, the information including vesselmotions

andallsensingsignalsaretransferredto the

mass (Balancing Weight in Fig。 4) are suspended betweenthetwoendpointsofcabletoillustrate the passive control property of PM system which provides the restoring, damping and mean control forcestocompensatetheloadvariationdueto wind, wave and current。 Here, the weightofeach massis0。2[kg]。

Fig。4Schematicdiagram ofexperimental set-up

3。2experimentresults

Theinertiaanddampingmatricesofbargeship,

 and,arecalculatedbyhydrodynamic softwarepackageandexperiment as:

⎡20。2[kg] 0 0

monitoring system (Host Computer) bywireless

M ⎢

0 28。2[kg]0。5[kg  m2 ]⎥ ,

network。Theprocessandtechniqueforexperiment

⎣⎢ 0 0。5[kg] 3。0[kg  m2 ]⎥⎦

(8)

are precisely illustrated in Fig。 4 and Fig。5 as described in previous。 Where, thevesselcomprises the barge ship and mooring lines。Especially,the bargeshiphasamassm=18。5[kg],length, L=1。3[m] and breath, B=0。4[m]。 And 4mooring

D diag{1。6[kg/s],8。0[kg/s], 1。2[kg。m2 /s]}。

Themooringlinesconfigurationaredescribedas

(x1, y1 ) (0。65,0。2), (x2 , y2 ) (0。65,0。2),

linesareproperlyinterconnectedbetween the vesselthroughsailwinchesandthewallof basin。

(x3 , y3 ) (0。65, 0。2), (x4 , y4 ) (0。65, 0。2)。

(9)

Also,theload-cellstomeasurethecabletension are placed on the cable。 Where the submerged

The PID controller usedinthisstudy has followingstructure:

The integral term is used to eliminate the steady-state error between the desired position and actualpositionofvessel。  and areprovided as:

illustrates when the hard disturbance condition is considered,thegoodperformance of ship cannot bemaintained。Inthiscase,theship is continuouslyoscillatedfor long time。 In contract to the non-activated control given in Fig。 5, good control performancecanbepreservedfromnormal to hard disturbance condition in the caseofPID control as shown in Fig。 6。 Thewinchessystem change the tension of mooring linestomakethe bargeshipreturntoinitialpositionafteraffection ofenvironmentalloads。Thecomparisonbetween the commanded tension and actual tension of each mooring line isshowninFig。7。Withcontrolling the winch by pulling and releasing each line, the tension of mooring line can follow the commanded tension made from controller。 In the PID case, the smootherchangeofcommandedtensionis shown。

4。Conclusion

Inthispaper,asthefirsttries,theauthors build

上一篇:套筒弹簧式扭振减振器制造英文文献和中文翻译
下一篇:CAE技术在车辆安全性应用英文文献和中文翻译

机械手系统英文文献和中文翻译

会计矿业环境估值方法英文文献和中文翻译

脑电图像P300机器人手臂运...

PLC可编程控制器的介绍英文文献和中文翻译

开槽电缆线筒体的方法英文文献和中文翻译

反馈控制消除机械振动英文文献和中文翻译

机器人运动模糊逻辑控制英文文献和中文翻译

安康汉江网讯

麦秸秆还田和沼液灌溉对...

ASP.net+sqlserver企业设备管理系统设计与开发

新課改下小學语文洧效阅...

老年2型糖尿病患者运动疗...

我国风险投资的发展现状问题及对策分析

LiMn1-xFexPO4正极材料合成及充放电性能研究

网络语言“XX体”研究

张洁小说《无字》中的女性意识

互联网教育”变革路径研究进展【7972字】