摘要日本式单元化生产 (Seru seisan) 是一种柔性制造系统,相较于传统装配线,更能适应 当前动态的市场环境。在波动的市场需求和不确定的市场环境下,seru 装配系统任务批次 优化问题对于制定 seru 生产计划非常重要。事实上,在实际的生产运作中,任务批次优化 决策主要是根据管理者的经验而非科学的理论指导。鉴于此,本文研究了不确定环境下单 周期的 seru 装配系统任务批次优化问题,构建以最小化完工时间和总延迟惩罚成本为目标 的模糊随机双目标模型。为处理不确定变量,本文先将模糊随机变量转化为梯形模糊变量, 再通过乐观悲观指数 Me 去模糊化。在得到一个等价的确定模型后,本文提出了基于枚举 可行解的启发式算法,最后通过一个算例来验证模型和算法的可行性和和适用性,结果验 证了该 seru 装配系统任务批次调度优化问题的效率。80192
毕业论文关键词 Seru 装配系统任务批次调度 多目标规划 模糊随机变量 启发式算法
Title Research on loading problem of seru assembly system under fuzzy random environment
Abstract Seru seisan has been proven to be a flexible manufacturing system which is more competitive in a volatile market than traditional assembly line。 To deal with fluctuating demands and uncertain product types, seru loading plays an essential role in seru seisan planning problem。 However, in practice, seru loading decision-making is mainly based on the supervisor’s experience instead of theoretical research。 Hence, in this paper, seru loading in a single period under uncertainty is considered, and a fuzzy random bi-objective model is developed where the objectives is to minimize the makespan and the total tardiness penalty。 To deal with the uncertainty variables, the fuzzy random parameters are transformed into the trapezoidal fuzzy variables, which are subsequently de-fuzzified by the optimistic-pessimistic adjustment index Me。 After obtaining the equivalent crisp model, a heuristic algorithm based on enumerating all the feasible solutions is designed。 A numerical example is finally applied to demonstrate the practicability of the proposed model and algorithm, and the generated results verify the efficiency for seru loading problem。
Keywords Seru loading Multiple objective Fuzzy random variable Heuristic algorithm
本 科 毕 业 论 文 第 I 页
目 次
1 绪论„1
1。1 研究背景„1
1。2 研究现状„1
1。3 研究框架„3
2 理论基础„5
2。1 Seru 装配系统任务批次调度优化„5
2。2 模糊随机变量„6
2。3 启发式算法8
3 模型构建9
3。1 问题描述9
3。2 模型建立9
3。3 算法实现„13
4 算例分析18
4。1 数据收集„18
4。2 结果分析19
结论 „22
致谢 „23
参考文献24
附录„26
第 II 页 本 科 毕 业 论 文
本 科 毕 业 论 文 第 1 页