摘 要:本文通过磷酸浸泡,辅助微波氧化活化玉米秸秆制备活性炭(C),然后通过氢氧化钠的乙二醇溶液还原氯铂酸,将生成纳米铂颗粒与活性炭复合,形成活性炭/铂(C/Pt),再利用纳米铂催化苯胺聚合,得到活性炭/铂/聚苯胺复合材料(C/Pt/PAN)。采用BET、SEM及红外光谱对产物进行表征,并采用循环伏安、恒电流充放电和交流阻抗测试方法对其电化学性能进行了研究。循环分析表明,电极在1mol·L–1的H2SO4电解液中,0~1V电位范围内,表现出良好的电容性能。研究发现,苯胺浓度对复合电极材料的性能有较大影响,当聚合的苯胺浓度为20%时,复合材料的比容量最大,达287。0F·g-1,较C的最大比容量(230。6F·g-1)提高了24。46%,能量密度和功率密度分别为:143。5J·g–1和18。85W·g–1,说明C/Pt/PAN比C具有更好的电容性能。94030
毕业论文关键词: 玉米秸秆,活性炭,聚苯胺,超级电容器
Abstract:Activated carbon (C) was successfully synthesized from corn straw by soaking in phosphoric acid, and then assisted by microwave oxidation。 Platinum nanoparticles were generated into the texture of activated carbon to achieve C/Pt composite by in situ reduction of chloroplatinic acid using ethylene glycol of sodium hydroxide as the reducing agent。 Then, using nano platinum in C/Pt composite catalyzes the polymerization of aniline to produce C/Pt/PAN composite material。 The C/Pt/PAN composite materials were characterized by BET、SEM and FT-IR techniques。 The electrochemical properties of composite materials were studied by cyclic voltammetry, constant current charge discharge and C impedance method。 Cycle analysis shows that concentration of aniline has a great influence on the performance of the composite electrode materials。 The composite material presented good capacitance performance, and the specific capacity reached 287。0F·g–1 when tested in 1mol/L H2SO4, scanned in the range of 0~1V, polymerization of aniline concentration was 20%。 However, the largest capacity of activated carbon reached to 230。6F·g–1, the specific capacity of C/Pt/PAN increased by 24。46% than that of C。 C/Pt/PAN energy density and power density are 143。5J·g–1 and 18。85W·g–1 respectively, illustrating the capacitance performance C/Pt/PAN is better than that of activated carbon。
Keywords: Corn straw, Activated carbon, Polyaniline, Super capacitor
目 录
1 前言 1
2 实验部分 1
2。1 仪器和实验药品 1
2。2 实验基础 2
2。2。1 玉米秸秆制备活性炭 2
2。2。2 市售活性炭与聚苯胺复合的最佳配比 2
2。3 活性炭与聚苯胺复合材料的制备 2
2。4 电极材料的制备 3
2。5 电化学测试方法及计算公式 3
2。5。1 电化学测试方法 3
2。5。2 计算公式 3
3 结果与讨论 4
3。1 各材料的表征 4
3。1。1 各材料的BET表征分析 4
3。1。2 各材料的电镜分析