摘要:Er3+中红外光纤激光器在军事国防、卫星遥感、医疗等领域有着广泛的应用,但是作为激光输出介质的氟化物玻璃光纤存在着物化性质不稳定,机械性能较差,发光强度不高等问题。本课题使用熔融退火法制备了系列Er3+/Ho3+共掺重金属玻璃,包括铋酸盐体系的Na2CO3-Bi2O3-GeO2玻璃和碲酸盐体系的TeO2-ZnO-La2O3玻璃,测试了样品的密度、离子浓度、拉曼光谱、吸收光谱、荧光光谱以及荧光寿命。发现Ho3+离子的引入对Er3+的2.7μm有着不同的影响。在碲酸盐体系中起到了增强效果,而铋酸盐体系中则降低了发光强度。依据测试的拉曼光谱,可知碲酸盐玻璃体系具有较高的声子能量水平。对于能级不匹配的电子跃迁,提高了能量传递效率。减弱的1.5μm发光和增强的可见光发光印证了共掺离子之间能量传递的有效性。因此Er3+/Ho3+共掺碲酸盐玻璃样品是一种潜在的2.7μm发光介质材料。43766
毕业论文关键词: Er3+/Ho3+共掺;重金属玻璃;吸收光谱;荧光光谱
Spectroscopic Properties of Er/Ho Co Doped Heavy Metal Glasses
Abstract: Er3+ mid infrared fiber laser has a wide range of applications in military defense, satellite remote sensing, medical treatment and other fields. But as the laser output media, fluoride glass optical fiber has the characteristics of instability, poor mechanical properties, low luminous intensity, and so on. This topic using melt annealing method to prepare series Er3+/Ho3+ Co doped heavy metal glass, including bismuth system glass Na2CO3-Bi2O3-GeO2 and tellurite system TeO2-ZnO-La2O3 of glass, The sample's density, ion concentration, Raman spectrum, absorption spectrum, fluorescence spectrum and fluorescence lifetime were measured. It is found that the introduction of Ho3+ ions has a different effect on the 2.7μm of Er3+. The luminescence intensity is enhanced in the tellurite system, but decreased in the bismuth system. On the basis of Raman spectra, the phonon energy level of the tellurite glass system has high.Electronic transitions for energy level mismatch, Improve the energy transfer efficiency. The decrease of the 1.5μm luminescence and the enhanced visible luminescence demonstrate the efficiency of the energy transfer between the Co ions. Therefore, Er3+/Ho3+ Co doped tellurite glass samples is a potential 2.7μm light emitting materials.
KeyWords:Er3+/Ho3+ co doping;Heavy metal glass;Absorption spectrum;Fluorescence spectrum
目 录
1 绪论 1
1.1 引言 1
1.2 稀土玻璃的光谱性质 1
1.2.1 稀土离子在玻璃中的发光 1
1.2.3 Er3+掺杂玻璃研究现状 3
1.3 中红外2-3μm稀土发光的研究意义 5
1.4 研究目标 5
2 实验 7
2.1 实验仪器、设备与试剂 7
2.1.1 实验仪器 7
2.1.2 实验设备 7
2.1.3 实验试剂 7
2.2 样品制备 8
2.3 样品测试 9
2.3.1 密度测试 9
2.3.2 折射率测试 9
2.3.3 光谱性质测试 9
3 结果与讨论 10
3.1 密度及离子浓度