模型(5﹒2)的解释:
a)  从0.878007提高到0.902027, 从0.872816提高到0.895637,说明拟合优度确实有所提高。
b) 因为虚拟变量Sex=1时,表示的是男性,而且sex的系数也为正,这两点说明了在总体上,男性比女性的逾期还款天数要多,也就是男性违约的可能性更大一些。
5.6 包含一个两分定性变量,一个四分定性变量,两个定量变量的回归估计模型
假设该模型如下:
 
个体、中小民企:  =0, =0, =1
中小国企、大型民企:  =1, =0, =0
大型国企、外企: =0, =1, =0
军队事业机关: =0, =0, =0
用Eviews软件作回归模型分析见表4。
表4 Eviews输出结果
 
从上述结果中可以看出, , , 的系数都没有通过t检验。虽然 =0.905163比模型(5﹒2)的 =0.902027大了一点,但是 =0.891930比模型(5﹒2)的 减小了。说明只是因为解释变量的增加使得 提高了,模型的拟合优度并没有改进。所以,单位类型这个风险因素不应该加入到客户信用卡评分模型中。

综合上述估计过程,选用模型(5﹒2)
 
作为客户信用卡评分模型。
5.7 模型的检验及模型变量解释
5.7.1 模型检验
a) 自相关检验。D.W.有所提高。查表得 = 1.46, =1.63,4- =2.37,因为D.W.=2.191348, <D.W.< 4- ,则无自相关,DW通过自相关检验。
b) 检验多重共线性:
(1)通过相关系数来检验,见表5。
表5 Correlation Matrix
    FAGE    CREDIT    SEX
FAGE     1.000000    -0.353003    -0.080769
CREDIT    -0.353003     1.000000    -0.228540
SEX    -0.080769    -0.228540     1.000000
这三个解释变量两两的相关系数都是负数,说明它们两两都呈负相关。
(2) 较高,t值也很显著。不满足多重共线性的“经典特征”。
综合(1)(2)基本可以说明模型的多重共线性程度比较轻,没有对参数估计产生严重后果。
上一篇:中国反倾销预警机制发展探讨+文献综述
下一篇:弗里德曼的通胀货币论在近期我国的检验

基于CreditMetrics模型的商业...

基于O2O共享经济视角下的商业模式研究

农村商业银行公司化治理...

农村商业银行信贷风险内...

互联网金融对我国商业银行的影响研究

新中國商业改革的回顾与展望【7309字】

与西方商业银行對中小企...

C#学校科研管理系统的设计

10万元能开儿童乐园吗,我...

医院财务风险因素分析及管理措施【2367字】

中国学术生态细节考察《...

公寓空调设计任务书

神经外科重症监护病房患...

承德市事业单位档案管理...

AT89C52单片机的超声波测距...

国内外图像分割技术研究现状

志愿者活动的调查问卷表