毕业论文
计算机论文
经济论文
生物论文
数学论文
物理论文
机械论文
新闻传播论文
音乐舞蹈论文
法学论文
文学论文
材料科学
英语论文
日语论文
化学论文
自动化
管理论文
艺术论文
会计论文
土木工程
电子通信
食品科学
教学论文
医学论文
体育论文
论文下载
研究现状
任务书
开题报告
外文文献翻译
文献综述
范文
有序环与有序域+文献综述(4)
第三种定义:设F是一个含有非零数的数集。如果F对于数的四则运算都封闭,那么称系统(F;+,-,×,&pide;)为一个数域。
举例:有理数域(Q,+, •),实数域(R,+, •),复数域(C,+, •),etc
但整数集Z不是域,因为1/x不是整数。(整数集Z是一个环,更准确的说是整环)
2.2序
二元关系
数学上,二元关系(binary relation)用于讨论两个数学对象的连系。诸如算术中的「大于」及「等于」,几何学中的"相似",或集合论中的"为•..之元素"或"为•..之子集"。
二元关系有时会简称关系,但一般而言关系不必是二元的。集合 X 与集合 Y 上的二元关系是 R=(X, Y, G(R)),其中 G(R),称为R 的图,是笛卡儿积X × Y的子集。若 (x,y) ∈ G(R) ,则称x 是 R-关系于y ,并记作 xRy 或 R(x,y)。否则称a与b无关系R。
但经常地我们把关系与其图等同起来,即:若 R ⊆ X × Y ,则R 是一个关系。
二元关系可看作成二元函数,这种二元函数把输入元 x ∈ X 及 y ∈ Y 视为独立变量并求真伪值。若X=Y,则称 R为 X 上的关系。
关系的性质主要有以下五种:自反性,反自反性,对称性,反对称性和传递性。
偏序
设R是集合X上的一个二元关系,若R满足:
Ⅰ 自反性:对任意a∈X,有aRa;
Ⅱ 反对称性(即反对称关系):对任意a,b∈X,若aRb,且bRa,则a=b;
Ⅲ 传递性:对任意a, b,c∈X,若aRb,且bRc,则aRc。
共4页:
上一页
1
2
3
4
下一页
上一篇:
齐次线性方程组解空间的一道例题探讨
下一篇:
一维混沌映射系统的分岔与相变研究
中美高中几何教学内容比...
中小学数学教材衔接研究...
中美初中数学教科书数与...
函数与不等式的关系研究
高中数学人教A版与北师大...
人教版华师大版中学数学...
圆锥曲线的性质及其应用椭圆与双曲线
10万元能开儿童乐园吗,我...
公寓空调设计任务书
承德市事业单位档案管理...
志愿者活动的调查问卷表
医院财务风险因素分析及管理措施【2367字】
中国学术生态细节考察《...
C#学校科研管理系统的设计
国内外图像分割技术研究现状
AT89C52单片机的超声波测距...
神经外科重症监护病房患...