摘要 本文根据某一类函数,在区间 上建立了相应的微分中值定理,给出具体条件,讨论了当 与 时中值点的渐近性,并进一步研究了逆定理的相关问题. 毕业论文关键词 微分中值定理;中值点;渐近性;逆定理.
Abstract: This article gives the mean value theorem of differentials based on a kind of function and discusses the asymoptic property of the intermediate point when x are near infinite and zero, studying the inverse theorem for the further step.
Key words: mean value theorem of differentials; intermediate point; asymoptic property;the inverse theorem.
1. 引言
作为近代微分学的核心内容,微分中值定理的地位日益突出,学者对于其研究热情也愈加高涨.在中值定理的研究中,主要涉及定理的应用价值、中值点的渐进性、逆定理即渐进性等相关内容. 文[1]在区间两个端点无限逼近其内某一固定点时,将中值点变化规律普遍化;文[4]以文[2]和文[3]为基石,总结了中值点在 时渐进性的条件和结论,延伸出更一般的结果;文[5]突破利用辅助函数的传统方法,给出中值点渐进性的新证法;文[6]研究了弱条件下区间无限长时中值点的渐进性;文[7]前人研究的基础上,放宽条件,总结出区间无限长时L-中值定理中值点渐进性的一般结论,并延展至积分的相应性质;文[8]至[11]则主要研究了一阶和高阶的不同微分中值定理反问题成立的条件.本文先给出某一类特定函数,建立相应的微分中值定理,再研究其中值点在区间长度及所给条件不同的情况下的渐进估计式,最后对反问题成立的条件加以探索和研究.32024
定理1 若函数 在 上可导,则存在 ,使得
, (1)
其中 为参数,且 .
证明:令 , 与 在 上连续,在 内可导,故 ,使