摘要:本文介绍了若尔当标准形的两种求法和其在矩阵的高次幂计算与计算矩阵多项式中的应用.复数域上每个矩阵都相似于一个若尔当标准形.方法一探讨通过初等变换求出初等因子,然后由初等因子可以得到矩阵的若尔当标准形.方法二通过探讨特征子空间与若尔当标准形的关系来计算矩阵的若尔当标准形.35630 毕业论文关键词:初等因子;若尔当标准形;特征子空间;几何重数; 代数重数
Jornda canonical form of calculation methods and their applications
Abstract: This paper introduces Jornda standard form of two kinds of calculation methods and the matrix of high order power calculation and the application of the calculation of matrix polynomial. On each matrix is similar to a complex domain Jornda a standard form. By using elementary transformation method is a research on the primary factor, and the primary factor can be obtained if, when the canonical form of matrix. Method 2 by discussing feature vector space and if, when the standard form of relationship to calculate if, when the canonical form of matrix.
Keywords: Primary factor; Jornda canonical form;Feature vector space; Geometric multiplicity; the algebraic multiplicity
目 录
摘要 1
引言 2
1 预备知识3
2 Jornda标准形的求法5
2.1利用初等因子的理论计算Jornda标准形 5
2.2 特征子空间与若尔当标准形6
3 若尔当标准形的应用9
3.1 在矩阵的高次幂计算中的应用.9
3.2 在计算矩阵多项式中的应用11
4 结束语14
参考文献 15
致谢 16
Jornda标准形的求法及其应用
引言